Symbiotic Husbandry of Chickens and Pigs Does Not Increase Pathogen Transmission Risk.

Foods

Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.

Published: October 2022

A symbiotic or mixed animal husbandry (e.g., pigs and chickens) is considered to have a positive effect for animal welfare and sustainable agriculture. On the other hand, a risk of infection and transmission of microorganisms, especially of zoonotic pathogens, between animal species may potentially occur and thus might increase the risk of foodborne illnesses for consumers. To prove these assumptions, two groups of animals and their environmental (soil) samples were investigated in this study. Animals were kept in a free-range system. In the first group, pigs and chickens were reared together (pasture 1), while the other group contained only pigs (pasture 2). During a one-year study, fecal swab samples of 240 pigs and 120 chickens, as well as 120 ground samples, were investigated for the presence of spp., spp. and . Altogether, 438 and 201 spp. strains were isolated and identified by MALDI-TOF MS. spp. was not isolated from any of the sample types. The prevalences of and in pigs were 26.7% and 3.3% in pasture 1 and 30.0% and 6.7% in pasture 2, while the prevalences of and in chickens from pasture 1 were 9.2% and 78.3%, respectively. No correlation between the rearing type (mixed vs. pigs alone) and the prevalence of spp. was observed. All swab samples were positive for , while the average prevalences in soil samples were 78.3% and 51.7% in pasture 1 and 2, respectively. Results of similarity analysis of the MALDI-TOF MS spectra (for , and ) and FT-IR spectra (for ) of the same bacterial species showed no recognizable correlations, no matter if strains were isolated from chickens, pig or soil samples or isolated at different sampling periods. The results of the study indicate that the symbiotic husbandry of pigs and chickens neither results in an increased risk of a transmission of spp. or , nor in a risk of bacterial alteration, as shown by MALDI-TOF MS and FT-IR spectra. In conclusion, the benefits of keeping pigs and chickens together are not diminished by the possible transmission of pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564097PMC
http://dx.doi.org/10.3390/foods11193126DOI Listing

Publication Analysis

Top Keywords

pigs chickens
16
soil samples
12
pigs
9
symbiotic husbandry
8
chickens
8
husbandry pigs
8
samples investigated
8
swab samples
8
strains isolated
8
ft-ir spectra
8

Similar Publications

Probiotics improve eggshell quality via regulating microbial composition in the uterine and cecum.

Poult Sci

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China. Electronic address:

Probiotics benefit the health and production performance of chickens, but their impact on egg and eggshell quality, particularly in the later stage, remains unclear. Here, 1-day-old Tianfu green shell-laying hens were fed either non-probiotics feed (n = 180) or feed supplemented with 100 mg / kg probiotics (n = 180). 16S rDNA sequencing indicated that dietary probiotics decreased the distribution of uterine p_Firmicutes, g_Fusobacterium, and s_Fusobacterium_unclassified, while increased p_Proteobacteria, g_Ralstonia, and s_Ralstonia_unclassified.

View Article and Find Full Text PDF

Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses.

Poult Sci

January 2025

Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China. Electronic address:

H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs).

View Article and Find Full Text PDF

Antimicrobial resistant (AMR) () isolated from animals may lead to antibiotic treatment failure and economic losses to farmers. The co-existence of antimicrobial resistant genes (ARGs) in the same isolate presents a major challenge for the prevention and control of infection in multidrug-resistant (MDR) Gram-negative organisms. There have been a lot of studies on the antibiotic resistance of in livestock and poultry, but few of them have focused on clinical pathogens.

View Article and Find Full Text PDF

Detection of selected vector-borne pathogens in domestic animals, ectoparasites, and their owners in a rural community in Southwest Guatemala.

Vet Parasitol Reg Stud Reports

January 2025

Center for Companion Animal Studies, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Vector-borne pathogens, which are transmitted by blood-feeding arthropods to animals and people, are common in tropical regions where, combined with economic factors, can cause significant public health burden. A community-level study was undertaken in southwestern Guatemala to assess the presence of vector-borne pathogens in blood samples from humans (n = 98), their animals (n = 90), and ectoparasites (n = 83) over a period of 2 weeks. Human capillary blood was collected from participant's index finger, and animal venous blood (chickens, pigs, dogs, and cats) was collected from the jugular or cephalic veins at the enrollment period of a concurrent study.

View Article and Find Full Text PDF

The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!