The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box-Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature and extraction time on the extraction yield of total saponins. A maximal yield of 23.06 mg/g was obtained at conditions of 2 mL/min, 210 °C and 50 min. The constituents of the extracts were analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of twenty-three compounds were identified, including five flavonoids, seventeen triterpenoid saponins and a phenolic acid. Moreover, we performed an in vitro assay for the -glucosidase activity and found a stronger inhibitory effect of the quinoa husk extracts than acarbose, suggesting its potential to be developed into functional products with hypoglycemic effect. Finally, our molecular docking analyses indicated triterpenoid saponins as the main bioactive components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563573 | PMC |
http://dx.doi.org/10.3390/foods11193026 | DOI Listing |
Small
January 2025
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
The potential of hydrogen plasma arc technology for the efficient deoxygenation and recycling of titanium alloy scrap is explored. The results of thermodynamic analysis reveal that hydrogen plasma is suitable for oxygen removal. The intermediate stages of the deoxygenation process are sequentially analyzed, showing that the hydrogen plasma arc primarily facilitated the reduction and dissolution of oxides as well as eliminated interstitial oxygen.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, Madhya Pradesh, 453552, India.
Background: The demand for sustainable energy solutions has increased interest in natural microalgal dyes as photosensitizers in dye-sensitized solar cells (DSSCs). This study addresses the critical issue of maximizing dye integrity and yield during extraction, particularly the degradation that occurs at temperatures above 60 °C. Our investigation of dye extraction from Asterarcys quadricellulare and Scenedesmus sp.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China. Electronic address:
Gastrodia elata BL. is a dried tuber of the orchid plant Gastrodia R. Br.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!