Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has led to an unprecedented public health emergency worldwide. While common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. Organ damage in COVID-19 patients is partially associated with the indirect effects of SARS-CoV-2 infection (e.g., systemic inflammation, hypoxic-ischemic damage, coagulopathy), but early processes in COVID-19 patients that trigger a chain of indirect effects are connected with the direct infection of cells by the virus. To understand the virus transmission routes and the reasons for the wide-spectrum of complications and severe outcomes of COVID-19, it is important to identify the cells targeted by SARS-CoV-2. This review summarizes the major steps of investigation and the most recent findings regarding SARS-CoV-2 cellular tropism and the possible connection between the early stages of infection and multiorgan failure in COVID-19. The SARS-CoV-2 pandemic is the first epidemic in which data extracted from single-cell RNA-seq (scRNA-seq) gene expression data sets have been widely used to predict cellular tropism. The analysis presented here indicates that the SARS-CoV-2 cellular tropism predictions are accurate enough for estimating the potential susceptibility of different cells to SARS-CoV-2 infection; however, it appears that not all susceptible cells may be infected in patients with COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874490PMC
http://dx.doi.org/10.1002/cbin.11928DOI Listing

Publication Analysis

Top Keywords

cellular tropism
16
sars-cov-2 cellular
12
multiorgan failure
12
covid-19 patients
12
sars-cov-2
8
covid-19
8
failure covid-19
8
indirect effects
8
sars-cov-2 infection
8
patients
5

Similar Publications

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins.

View Article and Find Full Text PDF

Reactive oxygen species favors Varicellovirus bovinealpha 5 (BoAHV-5) replication in neural cells.

Mitochondrion

January 2025

Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Buenos Aires, Argentina. Electronic address:

Varicellovirus bovinealpha (BoAHV) 1 and 5 are closely related neurotropic alphaherpesviruses with distinct neuropathogenic potential. BoAHV-5 causes meningoencephalitis in calves whereas encephalitis by BoAHV-1 infection is sporadic. the mechanisms underlying the differences in tropism and clinical outcomes of the infections are not yet completely understood.

View Article and Find Full Text PDF

Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health.

Geroscience

January 2025

Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction.

View Article and Find Full Text PDF

Enterovirus and Parechovirus Neurologic Infections in Children: Clinical Presentations and Neuropathogenesis.

J Pediatric Infect Dis Soc

January 2025

Sections of Hospital Medicine and Pediatric Infectious Diseases, University of Colorado, Aurora, CO, USA.

Enteroviruses (EVs) and parechoviruses (PeVs) are common pathogens of childhood. Enteroviral infections cause a range of clinical syndromes from mild illness to neurologic manifestations of meningitis, encephalitis, and acute flaccid myelitis. Disease manifestations are driven by a combination of viral replication and host immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!