Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial cells at fluid interfaces can self-assemble into collective communities with stunning macroscopic morphologies. Within these soft, living materials, called pellicles, constituent cells gain group-level survival advantages including increased antibiotic resistance. However, the regulatory and structural components that drive pellicle self-patterning are not well defined. Here, using Vibrio cholerae as our model system, we report that two sets of matrix proteins and a key quorum-sensing regulator jointly orchestrate the sequential mechanical instabilities underlying pellicle morphogenesis, culminating in fractal patterning. A pair of matrix proteins, RbmC and Bap1, maintain pellicle localization at the interface and prevent self-peeling. A single matrix protein, RbmA, drives a morphogenesis program marked by a cascade of ever finer wrinkles with fractal scaling in wavelength. Artificial expression of rbmA restores fractal wrinkling to a ΔrbmA mutant and enables precise tuning of fractal dimensions. The quorum-sensing regulatory small RNAs Qrr1-4 first activate matrix synthesis to launch pellicle primary wrinkling and ridge instabilities. Subsequently, via a distinct mechanism, Qrr1-4 suppress fractal wrinkling to promote fine modulation of pellicle morphology. Our results connect cell-cell signaling and architectural components to morphogenic patterning and suggest that manipulation of quorum-sensing regulators or synthetic control of rbmA expression could underpin strategies to engineer soft biomaterial morphologies on demand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561665 | PMC |
http://dx.doi.org/10.1038/s41467-022-33816-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!