Teleportation of hybrid entangled states with continuous-variable entanglement.

Sci Rep

School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, 2052, Australia.

Published: October 2022

Hybrid entanglement between discrete-variable (DV) and continuous-variable (CV) quantum systems is an essential resource for heterogeneous quantum networks. Our previous work showed that in lossy channels the teleportation of DV qubits, via CV-entangled states, can be significantly improved by a new protocol defined by a modified Bell state measurement at the sender. This work explores whether a new, similarly modified, CV-based teleportation protocol can lead to improvement in the transfer of hybrid entangled states. To set the scene, we first determine the performance of such a modified protocol in teleporting CV-only qubits, showing that significant improvement over traditional CV-based teleportation is obtained. We then explore similar modifications in the teleportation of a specific hybrid entangled state showing that significant improvement over traditional CV-based teleportation is again found. For a given channel loss, we find teleporting the DV qubit of the hybrid entangled state can always achieve higher fidelity than teleporting the CV qubit. We then explore the use of various non-Gaussian operations in our modified teleportation protocol, finding that, at a cost of lower success probability, quantum scissors provides the most improvement in the loss tolerance. Our new results emphasize that in lossy conditions, the quantum measurements undertaken at the sender can have a surprising and dramatic impact on CV-based teleportation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561706PMC
http://dx.doi.org/10.1038/s41598-022-21283-4DOI Listing

Publication Analysis

Top Keywords

hybrid entangled
16
cv-based teleportation
16
teleportation
8
entangled states
8
teleportation protocol
8
showing improvement
8
improvement traditional
8
traditional cv-based
8
entangled state
8
teleporting qubit
8

Similar Publications

Hybrid entanglement carrying orbital angular momentum.

Sci Bull (Beijing)

January 2025

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:

Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.

View Article and Find Full Text PDF

Rolling circle amplification (RCA) is a widely used method for the synthesis of DNA nanoparticles and macro-hydrogels. Several strategies, including oscillation-promoted entanglement of DNA chains, multi-round chain amplification, hybridization between DNA chains, and hybridization with functional moieties, were applied to synthesize DNA macro-hydrogels; alternatively, flower-like nanoparticles were also produced. Here we report a straightforward yet effective method to manipulate the morphology of RCA products from nanoparticles to 3D hydrogels using an additional cold treatment step of the circular DNA template prior to elongation using phi29 DNA polymerase.

View Article and Find Full Text PDF

Efficient traffic management solutions in 6G communication systems face challenges as the scale of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile ad-hoc pieces of fire networking sensors adapt to ambient changes.

View Article and Find Full Text PDF

Integrating Hydrogels and Biomedical Plastics via In Situ Physical Entanglements and Covalent Bonding.

Adv Healthc Mater

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

Both rigid plastics and soft hydrogels find ample applications in engineering and medicine but bear their own disadvantages that limit their broader applications. Bonding these mechanically dissimilar materials may resolve these limitations, preserve their advantages, and offer new opportunities as biointerfaces. Here, a robust adhesion strategy is proposed to integrate highly entangled tough hydrogels and diverse plastics with high interfacial adhesion energy and strength.

View Article and Find Full Text PDF
Article Synopsis
  • Two types of porous supporting materials were developed using chemical vapor deposition: CNT-decorated diatomite (CNT/DE) and CNT sponges (CNS) for creating form-stable phase-change material (PCM) composites with polyethylene glycol (PEG).
  • The CNT/DE matrix featured well-entangled nanotubes and enabled high PEG loading (75 wt%) without leakage, while the CNS formed a 3D porous structure that also supported high PEG incorporation.
  • Both PCM composites exhibited excellent thermal reliability through numerous melting-solidification cycles and demonstrated reduced cooling power requirements in building applications, indicating their potential for effective thermal energy storage in building materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!