Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small residue-mediated interhelical packing is ubiquitous in helical membrane proteins: however, the lipid dependence of its stability remains unclear. We previously demonstrated that the introduction of a GXXXG sequence in the middle of de novo-designed (AALALAA) helices (AALALAA AGLALGA AALALAA) facilitated their dimerization, which was abolished by cholesterol. Here single-pair FRET measurements revealed that a longer GXXXGXXXG segment (AALALAA A GLALGA AAGALAA) promoted helix dimerization in POPC/cholesterol bilayers, but not without cholesterol. The predicted dimer structures and degrees of helix packing suggested that helix dimers with small (∼10°) and large (∼55°) crossing angles were only stabilized in POPC and POPC/cholesterol membranes, respectively. A steric hindrance in the dimer interface and the large flexibility of helices prevented the formation of stable dimers. Therefore, amino acid sequences and lipid compositions distinctively constrain stable dimer structures in membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202200160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!