Core rhizosphere microbiome of Panax notoginseng and its associations with belowground biomass and saponin contents.

Environ Microbiol

Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Published: December 2022

The core rhizosphere microbiome is critical for plant fitness. However, its contribution to the belowground biomass and saponin contents of Panax notoginseng remains unclear. High-throughput sequencing of amplicon and metagenome was performed to obtain the microbiome profiles and functional traits in P. notoginseng rhizosphere across a large spatial scale. We obtained 639 bacterial and 310 fungal core OTUs, which were mainly affected by soil pH and organic matter (OM). The core taxa were grouped into four ecological clusters (i.e. high pH, low pH, high OM and low OM) for sharing similar habitat preferences. Furthermore, structural equation modelling (SEM) and correlation analyses revealed that the diversity and composition of core microbiomes, as well as the metagenome-derived microbial functions, were related to belowground biomass and saponin contents. Key microbial genera related to the two plant indicators were also identified. In short, this study explored the main driving environmental factors of core microbiomes in the P. notoginseng rhizosphere and revealed that the core microbiomes and microbial functions potentially contributed to the belowground biomass and saponin contents of the plant. This work may enhance our understanding of interactions between microbes and perennial plants and improve our ability to manage root microbiota for the sustainable production of herbal medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.16245DOI Listing

Publication Analysis

Top Keywords

belowground biomass
16
biomass saponin
16
saponin contents
16
core microbiomes
12
core rhizosphere
8
rhizosphere microbiome
8
panax notoginseng
8
notoginseng rhizosphere
8
high low
8
microbial functions
8

Similar Publications

Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region.

J Environ Manage

December 2024

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.

Grazing exclusion is effective in restoring vegetation and ecological services in degraded grasslands within semi-arid regions. Variations in plant functional traits associated with the duration of grazing exclusion can indicate both ecological adaptability of plants and restoration processes of ecosystems. However, research on ecosystem multifunctionality (EMF) under grazing exclusion and restoration mechanisms mediated by plant functional traits is relatively limited.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

Coarse roots represent a globally important belowground carbon pool, but the factors controlling coarse root decomposition rates remain poorly understood relative to other plant biomass components. We compiled the most comprehensive dataset of coarse root decomposition data including 148 observations from 60 woody species, and linked coarse root decomposition rates to plant traits, phylogeny and climate to address questions of the dominant controls on coarse root decomposition. We found that decomposition rates increased with mean annual temperature, root nitrogen and phosphorus concentrations.

View Article and Find Full Text PDF

Worldwide comparison of carbon stocks and fluxes between native and non-native forests.

Biol Rev Camb Philos Soc

December 2024

Departamento de Ciencias de la Vida, Universidad de Alcalá, Facultad de Ciencias, Área de Ecología, Ctra. Madrid-Barcelona, km.33, 600, 28805, Alcalá de Henares, Madrid, Spain.

Climate change is one of the main challenges that human societies are currently facing. Given that forests represent major natural carbon sinks in terrestrial ecosystems, administrations worldwide are launching broad-scale programs to promote forests, including stands of non-native trees. Yet, non-native trees may have profound impacts on the functions and services of forest ecosystems, including the carbon cycle, as they may differ widely from native trees in structural and functional characteristics.

View Article and Find Full Text PDF

, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novel metagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representing , , JAAYZQ01, B4-G1, JAFGEY01, UCB3, and orders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!