Scanning electron microscopy has been a powerful technique to investigate the structural and chemical properties of multiphase materials on micro and nanoscale due to its high-resolution capabilities. One of the main outcomes of the SEM-based analysis is the calculation of the fractions of material components constituting the multiphase material by means of the segmentation of their back scattered electron SEM images. In order to segment multiphase images, Gaussian mixture models (GMMs) are commonly used based on the deconvolution of the image pixel histogram. Despite its extensive use, the accuracy of GMM predictions has not been validated yet. In this paper, we proceed to a systematic study of the evaluation of the accuracy and the limitations of the GMM method when applied to the segmentation of a four-phase material. To this end, first, we build a modelling framework and propose an index to quantify the accuracy of GMM predictions for all phases. Then we apply this framework to calculate the impact of collective parameters of image histogram on the accuracy of GMM predictions. Finally, some rules of thumb are concluded to guide SEM users about the suitability of using GMM for the segmentation of their SEM images based only on the inspection of the image histogram. A suitable histogram for GMM is a histogram with number of peaks equal to the number of Gaussian components, and if that is not the case, kurtosis and skewness should be smaller than 2.35 and 0.1, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.13150 | DOI Listing |
J Vis Exp
December 2024
Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;
Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Animal Science, Azadshahr Branch Islamic Azad University Azadshahr Iran.
Wheat gluten is a by-product of the wheat starch industry, rich in bioactive peptides. Spray drying is an effective method for improving the stability of bioactive compounds. So, the aim of this study was to produce gluten hydrolysate by different proteases (alcalase, pancreatin, and trypsin) at different times (40-200 min).
View Article and Find Full Text PDFJ Microsc
January 2025
Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Applied Biosciences, Kyungpook National University, 41566, Daegu, Republic of Korea. Electronic address:
Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Chemistry, Govt. College Women University, Arfa Kareem Road, Faisalabad 38000 Pakistan. Electronic address:
The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!