Study on the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor.

Bioresour Technol

Changchun Institute of Technology, Changchun 130012, China; Key Laboratory of Urban Sewage Treatment of Jilin Province , Changchun 130012, China. Electronic address:

Published: November 2022

AI Article Synopsis

  • This study explored how a Micro-pressure swirl reactor (MPSR) can enhance the removal of nitrogen and phosphorus from municipal wastewater through a unique environment alternating between anaerobic, anoxic, and aerobic conditions.
  • The reactor achieved high removal efficiencies for various pollutants, including COD (91.57%), NH-N (98.51%), TN (85.88%), and TP (96.08%).
  • Key microbial species, Flavobacterium and Dechloromonas, were identified as dominant in the phosphorus removal process under low dissolved oxygen conditions, highlighting the complex interactions in nutrient removal pathways within the MPSR.

Article Abstract

To reveal the mechanisms of enhanced biological nitrogen and phosphorus removal by denitrifying phosphorus removal in a Micro-pressure swirl reactor (MPSR), this study used a MPSR to treat municipal wastewater and enriched denitrifying phosphate accumulating organisms (DPAOs) by using its alternating anaerobic-anoxic-aerobic environment. The coupling of denitrification phosphorus removal (DPR) and simultaneous nitrification endogenous denitrification phosphorus removal (SNEDPR) was achieved in MPSR, and the average removal rates of COD, NH-N, TN and TP were 91.57%, 98.51%, 85.88%, 96.08% respectively. The results of the batch experiments showed that DPAOs activity in the low dissolved oxygen (DO) and high DO zones were 70.5% and 74.3%. The results of intracellular carbon source conversion patterns, microbial assays and functional gene prediction indicated that Flavobacterium and Dechloromonas dominated the DPR process in the low DO zone. Based on these findings, nutrient removal pathways within the MPSR were integrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128093DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
24
mechanisms enhanced
8
enhanced biological
8
biological nitrogen
8
nitrogen phosphorus
8
removal
8
removal denitrifying
8
denitrifying phosphorus
8
removal micro-pressure
8
micro-pressure swirl
8

Similar Publications

Context: TIO, a paraneoplastic disorder characterised by renal phosphate wasting, is cured by surgical removal of the culprit tumour. Despite correct localization, some remain refractory to intervention, resulting in substantial long-term medical complications.

Aim: We aim to identify risk factors associated with a refractory outcome.

View Article and Find Full Text PDF

Polysilicate-ferric-calcium-lanthanum (PSFCL) was synthesized through a co-polymerization method in order to treat the yellow phosphorus wastewater. Its morphology, composition and functional group were analyzed by X-ray Diffraction (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopic (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The optimization of the flocculant was also investigated, including La/Si molar ratio, pH, agitation time, dosage and sedimentation time.

View Article and Find Full Text PDF

Optimizing Biochar-Based Column Filtration Systems for Enhanced Pollutant Removal in Wastewater Treatment: A Preliminary Study.

Chemosphere

January 2025

Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech Morocco. Electronic address:

This study aims to test the efficiency of biochar-based substrates in removing chemical and bacteriological pollutants from wastewater and to determine the optimal percentage of biochar (BC) to implement for large-scale filters (e.g., constructed wetlands).

View Article and Find Full Text PDF

Dentin hypersensitivity (DH), marked by exposed dentinal tubules, presents as a sharp toothache triggered by stimuli and subsides when the stimuli are removed. To address the limitations of current commercial desensitizers in terms of acid resistance, friction resistance, and stability, a black phosphorus nanosheet-composited methacrylate gelatin hydrogel (GelMA/BP) is developed for DH treatment, leveraging the synergistic effects of photothermal therapy and biomineralization. Incorporating the BP nanosheet provided GelMA/BP with a stable photothermal response and the continuous release of phosphate anions, which blocked dentinal tubules by converting light energy into heat and initiating biomineralization.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by hypophosphatemia caused by excessive secretion of fibroblast growth factor-23 (FGF-23) by tumors. This leads to impaired bone mineralization and, ultimately, osteomalacia. The most common underlying cause is a phosphaturic mesenchymal tumor (PMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!