The complexity of the role of HDL-cholesterol.

Rev Esp Cardiol (Engl Ed)

Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Servicio de Epidemiología Clínica y Salud Pública, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Published: February 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rec.2022.10.001DOI Listing

Publication Analysis

Top Keywords

complexity role
4
role hdl-cholesterol
4
complexity
1
hdl-cholesterol
1

Similar Publications

Designing Health Recommender Systems to Promote Health Equity: A Socioecological Perspective.

J Med Internet Res

January 2025

Department High-Tech Business and Entrepreneurship Section, Industrial Engineering and Business Information Systems, University of Twente, Enschede, Overijssel, Netherlands.

Health recommender systems (HRS) have the capability to improve human-centered care and prevention by personalizing content, such as health interventions or health information. HRS, an emerging and developing field, can play a unique role in the digital health field as they can offer relevant recommendations, not only based on what users themselves prefer and may be receptive to, but also using data about wider spheres of influence over human behavior, including peers, families, communities, and societies. We identify and discuss how HRS could play a unique role in decreasing health inequities.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF
Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Background: Artificial intelligence (AI) is anticipated to play a significant role in criminal trials involving citizen jurors. Prior studies have suggested that AI is not widely preferred in ethical decision-making contexts, but little research has compared jurors' reliance on judgments by human judges versus AI in such settings.

Objectives: This study examined whether jurors are more likely to defer to judgments by human judges or AI, especially in cases involving mitigating circumstances in which human-like reasoning may be valued.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!