Microplastics, tiny plastic fragments from 1 μm to 5 mm, are widespread globally, even in remote environments. Due to their small sizes, they are easily ingested by organisms and contaminate the food chain. Recently, the biodegradation of some recalcitrant plastics by larva of Tenebrio molitor L. (mealworm) has been reported. However, the effects of microplastic feeding on them are limited. In our study, we selected rigid micro-polystyrene (MPS) as the model plastic to investigate the influences of particle size and larval age on plastic consumption and degradation, and the effects of microplastic feeding on the survival and development of mealworms at different larval ages. The smaller the microplastic fragment was, the more plastics the mealworms consumed, though there was a limit on particle size. Mealworms of three-month-old had the highest consumption rate. Both depolymerization and modification on the functional groups were only observed in frass excreted by three-month old mealworms. Additionally, mealworms cofed with wheat bran and MPS of this age had comparable mortality, larval growing curve and pupation distribution as the control group with wheat bran. Our results demonstrated that mealworms in this larval stage had the greatest resistance to high doses of microplastic feeding. We suggested that microplastic waste could be provided to three-month old mealworms as half replacement of bran diet to result in the greatest plastic consumption and degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159335 | DOI Listing |
Alzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.
View Article and Find Full Text PDFAWWA Water Sci
March 2024
Department of Civil, Construction, and Environmental Engineering, North, Carolina State University, Raleigh, North, Carolina, USA.
Per- and polyfluoroalkyl substances (PFAS) occur widely in drinking water, and consumption of contaminated drinking water is an important human exposure route. Granular activated carbon (GAC) adsorption can effectively remove PFAS from water. To support the design of GAC treatment systems, a rapid bench-scale testing procedure and scale-up approach are needed to assess the effects of GAC type, background water matrix, and empty bed contact time (EBCT) on GAC use rates.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
December 2024
Department of Pharmaceutics, SRM College of Pharmacy, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India.
The current study aimed to improve the oral bioavailability of tenofovir (TNF), an antihuman immunodeficiency viral (HIV) drug, by integrating it into solid lipid nanoparticles (SLNs), an emerging lipid formulation. The suggested SLNs were generated utilizing the microemulsion process, using Compritol 888 ATO. A Box-Behnken experimental design was attempted to analyze the impact of critical quality attributes (CQAs), such as lipid and surfactant content and homogenization duration on response metrics such as particle size (PS) and percentage entrapment.
View Article and Find Full Text PDFSmall
January 2025
Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.
Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, University of Kerala, Karyavattom 695581, Thiruvananthapuram, Kerala, India.
The effects of Na doping on the structure magnetic, electric, and magnetoelectric properties of GaFeOwere studied. Rietveld refinement of the XRD data reveals the formation of a single-phase trigonal structure with no impurity on Na doping up to 50% and a significant increase in lattice strain with doping. FTIR and Raman analysis further supported the phase purity of the samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!