Production of phycobiliproteins, bioplastics and lipids by the cyanobacteria Synechocystis sp. treating secondary effluent in a biorefinery approach.

Sci Total Environ

GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain. Electronic address:

Published: January 2023

Cyanobacteria have been identified as promising organisms to reuse nutrients from waste effluents and produce valuable compounds such as lipids, polyhydroxyalkanoates (PHAs), and pigments. However, almost all studies on cyanobacterial biorefineries have been performed under lab scale and short cultivation periods. The present study evaluates the cultivation of the cyanobacterium Synechocystis sp. in a pilot scale 30 L semi-continuous photobioreactor fed with secondary effluent for a period of 120 days to produce phycobiliproteins, polyhydroxybutyrate (PHB) and lipids. To this end, the harvested biomass from the semi-continuous photobioreactor was transferred into 5 L vertical column batch photobioreactors to perform PHB and lipid accumulation under nutrient starvation. Three hydraulic retention times (HRT) (6, 8 and 10 days) were tested in the semi-continuous photobioreactor to evaluate its influence on biomass growth and microbial community. A maximum biomass concentration of 1.413 g L and maximum productivity of 173 mg L d was reached under HRT of 8 days. Microscopy analysis revealed a shift from Synechocystis sp. to Leptolyngbya sp. and green algae when HRT of 6 days was used. Continuous, stable production of phycobiliproteins in the semi-continuous photobioreactor was obtained, reaching a maximum content of 7.4% in the biomass. In the batch photobioreactors a PHB content of 4.8% was reached under 7 days of nitrogen and phosphorus starvation, while a lipids content of 44.7% was achieved under 30 days of nitrogen starvation. PHB and lipids production was strongly dependent on the amount of nutrients withdrawn from the grow phase. In the case of lipids, their production was stimulated when there was only phosphorus depletion. While Nitrogen and phosphorus limitation was needed to enhance the PHB production. In conclusion, this study demonstrates the feasibility of cultivating cyanobacteria in treated wastewater to produce bio-based valuable compounds within a circular bioeconomy approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.159343DOI Listing

Publication Analysis

Top Keywords

semi-continuous photobioreactor
16
hrt days
12
production phycobiliproteins
8
secondary effluent
8
valuable compounds
8
phb lipids
8
batch photobioreactors
8
days nitrogen
8
nitrogen phosphorus
8
lipids production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!