The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2022.09.001DOI Listing

Publication Analysis

Top Keywords

lake victoria
24
dolicirroplectanum lacustre
12
nile perch
12
lates niloticus
12
lake albert
12
lake
9
monogenean gill
8
gill parasite
8
perch lates
8
mitonuclear discordance
8

Similar Publications

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.

View Article and Find Full Text PDF

GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19.

Nature

May 2023

Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.

Article Synopsis
  • Researchers analyzed genetic data from 24,202 critically ill COVID-19 cases, showing that host genetics can help identify effective immunomodulatory therapies.
  • They conducted a meta-analysis that revealed 49 significant genetic associations, including 16 new ones not previously reported.
  • Key findings include potential drug targets related to inflammation, immune response, and viral entry, which could lead to new treatment strategies for severe COVID-19 cases.
View Article and Find Full Text PDF
Article Synopsis
  • Critical COVID-19 is linked to immune system damage in the lungs, showing that genetics play a key role in severe cases requiring hospitalization.
  • The GenOMICC study analyzes the genomes of 7,491 critically ill patients against 48,400 controls, uncovering 23 genetic variants that increase the risk for severe COVID-19, including new associations related to immune response and blood type.
  • The findings suggest that both viral replication and heightened lung inflammation contribute to critically ill cases, highlighting potential genetic targets for new treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!