The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2022.09.001 | DOI Listing |
HGG Adv
October 2024
Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany. Electronic address:
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.
View Article and Find Full Text PDFNature
July 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
May 2023
Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature
July 2022
Roslin Institute, University of Edinburgh, Edinburgh, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!