Plants have profound therapeutic benefits, more economical treatments, fewer side effects, and a relatively cheap cost, making them a source of drugs for protective, preventative, curative, or conducive purposes and creating novel phytomedicines. Plant derived medicines are relatively safe compared to synthetic medicines. Many plants have proved to successfully aid in the treatment of diabetes including Filago hurdwarica (Wall. ex DC.) Wagenitz. The current investigations were therefore designed to assess the phytochemical, antioxidant, antidiabetic, and antihyperlipidemic activities of F. hurdwarica. The phytochemical investigations and antioxidant activities of different extracts were carried out using standard chemical tests, DPPH, and H2O2 scavenging assays. F. hurdwarica plant extract in Hydromethanolic solution were prepared by Soxhletation method and stored in refrigerator at 4°C for two days before use. Swiss Albino mice were made diabetic by a single dose of alloxan (150 mg/kg). Hydromethanolic plant extract and fractions of F. hurdwarica were screened for antidiabetic activity and given to the alloxan-induced diabetic mice at a concentration of 150-250 mg/kg of body weight in different groups of 6 diabetic mice each orally once a day for 15 days. Glibenclamide is also given to another group to as a standard drug to support the result at a dose of 10 mg/kg of body weight orally once a day for 15 days. Blood glucose levels and body weights of mice were measured on 0, 4, 7, 11 and 15th days. The study found that the extract was safe up to the dose level of 2000 mg/kg and the dose response effect of chloroform extract (150-250 mg/kg) of F. hurdwarica showed expressive antihyperglycemic effects and also improved other altered biochemical parameters associated with diabetes. The FTIR and XRD spectra demonstrated the occurrence of phenols, alcohols, alkenes, alkyl halides, ketones, and aromatic compounds and confirmed the amorphous nature of the extract. GC-MS spectral analysis showed the tentative presence of 31 phytochemical constituents in the chloroform extract of F. hurdwarica with different retention time. To conclude, the chloroform extract (250 mg/kg) of F. hurdwarica revealed considerable antioxidant, antihyperglycemic, and antihyperlipidemic potential and is safe for treating diabetes and related complications.

Download full-text PDF

Source
http://dx.doi.org/10.1590/1519-6984.261518DOI Listing

Publication Analysis

Top Keywords

diabetic mice
12
chloroform extract
12
hurdwarica
8
filago hurdwarica
8
hurdwarica wall
8
wall wagenitz
8
plant extract
8
150-250 mg/kg
8
mg/kg body
8
body weight
8

Similar Publications

Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A.

Diabetes Metab J

January 2025

NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.

View Article and Find Full Text PDF

Lectins are produced in almost all life forms, can interact with targets (glycans) in a cross-kingdom manner and have served as valuable tools for studying glycobiology. Previously, a bacterial lectin, named Streptomyces hemagglutinin (SHA), was found to agglutinate human type B erythrocytes. However, the binding of SHA to mammalian cell types other than human erythrocytes has not been explored.

View Article and Find Full Text PDF

Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis.

Nat Commun

January 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.

View Article and Find Full Text PDF

Thermal gradient ring for analysis of temperature-dependent behaviors involving TRP channels in mice.

J Physiol Sci

January 2025

Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Course of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan. Electronic address:

There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes (T2D) is a chronic condition characterized by high levels of blood glucose resulting from the inefficiency of insulin. This study aims to explore the mechanism of TGFB-induced factor homeobox 1 (TGIF1) in the glycolipid metabolism of mice with T2D.

Research Design And Methods: Mice with T2D were induced by high-fat diet and low-dose streptozotocin (STZ) injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!