Metallic Nanoparticle-Doped Oxide Semiconductor Film for Bone Tumor Suppression and Bone Regeneration.

ACS Appl Mater Interfaces

Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou510080, China.

Published: October 2022

Bone implants with the photothermal effect are promising for the treatment of bone tumor defects. Noble metal-based photothermal nanoagents are widely studied for their stable photothermal effect, but they are expensive and difficult to directly grow on implant surfaces. In contrast, non-noble metal photothermal nanoagents are economical but unstable. Herein, to develop a stable and economical photothermal film on bone implants, a Ni nanoparticle-doped oxide semiconductor film was grown in situ on Nitinol via the reduction of Ni-Ti-layered double hydroxides. Ni nanoparticles remained stable in the NiTiO structure even when immersed in fluid for 1 month, and thus, the film presented a reliable photothermal effect under near-infrared light irradiation. The film also showed excellent in vitro and in vivo antitumor performance. Moreover, the nanostructure on the film allowed bone differentiation of mouse embryo cells (C3H10T1/2), and the released Ni ions supported the angiogenesis behavior of human vein endothelial cells. Bone implantation experiments further showed the enhancement of osteointegration of the modified Nitinol implant in vivo. This novel multifunctional Nitinol bone implant design offers a promising strategy for the therapy of bone tumor-related defects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c10672DOI Listing

Publication Analysis

Top Keywords

bone
9
nanoparticle-doped oxide
8
oxide semiconductor
8
semiconductor film
8
film bone
8
bone tumor
8
bone implants
8
photothermal nanoagents
8
film
6
photothermal
6

Similar Publications

The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease.

J Cancer Res Ther

December 2024

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT.

View Article and Find Full Text PDF

Importance: Data characterizing the severity and changing prevalence of bone mineral density (BMD) deficits and associated nonfracture consequences among childhood cancer survivors decades after treatment are lacking.

Objective: To evaluate risk for moderate and severe BMD deficits in survivors and to identify long-term consequences of BMD deficits.

Design, Setting, And Participants: This cohort study used cross-sectional and longitudinal data from the St Jude Lifetime (SJLIFE) cohort, a retrospectively constructed cohort with prospective follow-up.

View Article and Find Full Text PDF

Background: The rising incidence of kidney stones underscores the imperative to devise effective preventive measures. While a robust association between cardiovascular disease (CVD) and kidney stones exists, the current research landscape lacks investigations between cardiovascular health (CVH) and kidney stones. This study aims to explore the association between CVH, assessed by Life's Essential 8 (LE8), and kidney stones, with the role of blood lipids and insulin resistance in this relationship.

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!