Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595520PMC
http://dx.doi.org/10.1371/journal.pbio.3001827DOI Listing

Publication Analysis

Top Keywords

molecular evolution
12
gene families
12
splitting pruning
8
single-copy orthologs
8
evolution studies
8
number markers
8
markers molecular
8
branches tree
8
orthologous groups
8
groups genes
8

Similar Publications

Gone with the Species: From Gene Loss to Gene Extinction.

Front Biosci (Schol Ed)

December 2024

Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan.

Background: Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons".

View Article and Find Full Text PDF

In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance.

View Article and Find Full Text PDF

Aptamers are oligonucleotide-based affinity reagents that are increasingly being used in various applications. Systematic evolution of ligands by exponential enrichment (SELEX) has been widely used to isolate aptamers for small-molecule targets, but it remains challenging to generate aptamers with high affinity and specificity for targets with few functional groups. To address this challenge, we have systematically evaluated strategies for optimizing the isolation of aptamers for (+)-methamphetamine, a target for which previously reported aptamers have weak or no binding affinity.

View Article and Find Full Text PDF

Inert splint-driven oligonucleotide assembly.

Synth Biol (Oxf)

December 2024

Claret Bioscience LLC, 100 Enterprise Way, Suite A102, Scotts Valley, CA 95066, United States.

In this study, we introduce a new method for oligonucleotide fragment assembly. Unlike polymerase chain assembly and ligase chain assembly that rely on short, highly purified oligonucleotides, our method, named , uses a one-tube, splint-driven assembly reaction. Splynthesis connects standard-desalted "contig" oligos (∼150 nt in length) via shorter "splint" oligos harboring 5' and 3' blocking modifications to prevent off-target ligation and amplification events.

View Article and Find Full Text PDF

Background: The 313-variant polygenic risk score (PRS) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS across different European populations which could influence risk estimation has not been performed.

Methods: We explored the distribution of PRS across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!