A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promoting engagement with quality communication in social media. | LitMetric

The COVID-19 pandemic made explicit the issues of communicating science in an information ecosystem dominated by social media platforms. One of the fundamental communication challenges of our time is to provide the public with reliable content and contrast misinformation. This paper investigates how social media can become an effective channel to promote engagement and (re)build trust. To measure the social response to quality communication, we conducted an experimental study to test a set of science communication recommendations on Facebook and Twitter. The experiment involved communication practitioners and social media managers from select countries in Europe, applying and testing such recommendations for five months. Here we analyse their feedback in terms of adoption and show that some differences emerge across platforms, topics, and recommendation categories. To evaluate these recommendations' effect on users, we measure their response to quality content, finding that the median engagement is generally higher, especially on Twitter. The results indicate that quality communication strategies may elicit positive feedback on social media. A data-driven and co-designed approach in developing counter-strategies is thus promising in tackling misinformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560150PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275534PLOS

Publication Analysis

Top Keywords

social media
20
quality communication
12
response quality
8
communication
6
social
6
media
5
promoting engagement
4
quality
4
engagement quality
4
communication social
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!