Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress.

PLoS One

Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada.

Published: October 2022

Plants have evolved heavy metal tolerance mechanisms to adapt and cope with nickel (Ni) toxicity. Decrypting whole gene expression of Trembling Aspen (Pinus tremuloides) under nickel stress could elucidate the nickel resistance/tolerance mechanisms. The main objectives of the present research were to 1) characterize the P. tremuloides transcriptome, and 2) compare gene expression dynamics between nickel-resistant and nickel-susceptible P. tremuloides genotypes with Whole Transcriptome (WT) sequencing. Illumina Sequencing generated 27-45 million 2X150 paired-end reads of raw data per sample. The alignment performed with StringTie Software added two groups of transcripts to the draft genome annotation. One group contained 32,677 new isoforms that match to 17,254 genes. The second group contained 17,349 novel transcripts that represent 16,157 novel genes. Overall, 52,987 genes were identified from which 36,770 genes were selected as differently expressed. With the high stringency (two-fold change, FDR value ≤ 0.05 and logFC value ≥1 (upregulated) or ≤ -1 (downregulated), after GSEA analysis and filtering for gene set size, 575 gene sets were upregulated and 146 were downregulated in nickel resistant phenotypes compared to susceptible genotypes. For biological process, genes associated with translation were significantly upregulated while signal transduction and cellular protein process genes were downregulated in resistant compared to susceptible genotypes. For molecular function, there was a significant downregulation of genes associated with DNA binding in resistant compared to susceptible lines. Significant upregulation was observed in genes located in ribosome while downregulation of genes in chloroplast and mitochondrion were preponderant in resistant genotypes compared to susceptible. Hence, from a whole transcriptome level, an upregulation in ribosomal and translation activities was identified as the main response to Ni toxicity in the resistant plants. More importantly, this study revealed that a metal transport protein (Potrs038704g29436 -ATOX1-related copper transport) was among the top upregulated genes in resistant genotypes when compared to susceptible plants. Other identified upregulated genes associated with abiotic stress include genes coding for Dirigent Protein 10, GATA transcription factor, Zinc finger protein, Auxin response factor, Bidirectional sugar transporter, and thiamine thiazole synthase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560071PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274740PLOS

Publication Analysis

Top Keywords

compared susceptible
20
genes
12
genes associated
12
trembling aspen
8
tremuloides nickel
8
nickel stress
8
gene expression
8
group contained
8
susceptible genotypes
8
process genes
8

Similar Publications

The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Functional resting state connectivity is differentially associated with IL-6 and TNF-α in depression and in healthy controls.

Sci Rep

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.

Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.

View Article and Find Full Text PDF

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!