Our team's pharmacological and clinical trials proved that ligustrazine/borneol spray had a definite effect on ischemic stroke (IS). To solve the shortcomings of ligustrazine/borneol spray, such as low bioavailability, short half-life, and poor compatibility between borneol and ligustrazine, ligustrazine-loaded borneol liposomes (LIP@TMP) were successfully prepared by a thin-film ultrasonication method. The average particle size of LIP@TMP was 282.4 ± 3.6 nm, the drug loading rate was 14.5 ± 0.6%, and the entrapment efficiency was 42.7 ± 1.0%, which had excellent stability and sustained release ability. In addition, live/dead fluorescent staining and the CCK-8 test confirmed that LIP@TMP had good biocompatibility. Moreover, middle cerebral artery occlusion (MCAO) rat model experiments further demonstrated that LIP@TMP could significantly alleviate cerebral ischemia and reperfusion injury by improving neurological scores, reducing cerebral infarct volume, promoting neurogenesis, inhibiting inflammation, and reducing tissue damage. In addition, LIP@TMP enhanced neuronal marker doublecortin (DCX) and neuronal nuclei (NEUN), inhibited inflammatory factors (TNF-α and IL-1β), and reduced apoptosis signal molecules (TUNEL and caspase-3). The findings of this study suggested that the prepared LIP@TMP had tremendous potential for the treatment of cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.2c00847DOI Listing

Publication Analysis

Top Keywords

ligustrazine-loaded borneol
8
ligustrazine/borneol spray
8
cerebral ischemia
8
lip@tmp
6
cerebral
5
borneol liposome
4
liposome alleviates
4
alleviates cerebral
4
cerebral ischemia-reperfusion
4
ischemia-reperfusion injury
4

Similar Publications

Our team's pharmacological and clinical trials proved that ligustrazine/borneol spray had a definite effect on ischemic stroke (IS). To solve the shortcomings of ligustrazine/borneol spray, such as low bioavailability, short half-life, and poor compatibility between borneol and ligustrazine, ligustrazine-loaded borneol liposomes (LIP@TMP) were successfully prepared by a thin-film ultrasonication method. The average particle size of LIP@TMP was 282.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!