The present article is focused on developing and validating an efficient, credible, minimally invasive technique based on spectral signatures of blood samples of women with recurrent miscarriage vs. those of healthy individuals who were followed in the Department of Obstetrics and Gynecology for 2 years. For this purpose, blood samples from a total of 120 participants, including healthy women (n=60) and women with diagnosed recurrent miscarriage (n=60), were obtained. The lipid profile (high-density lipoprotein, low-density lipoprotein, triglyceride, and total cholesterol levels) and lipid peroxidation (malondialdehyde and glutathione levels) were evaluated with a Beckman Coulter analyzer system for chemical analysis. Biomolecular structure and composition were determined using an attenuated total reflectance sampling methodology with Fourier transform infrared spectroscopy alongside machine learning technology to advance toward clinical translation. Here, we developed and validated instrumentation for the analysis of recurrent miscarriage patient serum that was able to differentiate recurrent miscarriage and control patients with an accuracy of 100% using a Fourier transform infrared region corresponding to lipids. We found that predictors of lipid profile abnormalities in maternal serum could significantly improve this patient pathway. The study also presents preliminary results from the first prospective clinical validation study of its kind.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-04370-3DOI Listing

Publication Analysis

Top Keywords

recurrent miscarriage
20
machine learning
8
blood samples
8
lipid profile
8
fourier transform
8
transform infrared
8
recurrent
5
miscarriage
5
blood serum
4
lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!