There is great interest in developing non-invasive approaches for studying cortical plasticity in humans. High-frequency presentation of auditory and visual stimuli, or sensory tetanisation, can induce long-term-potentiation-like (LTP-like) changes in cortical activity. However, contrasting effects across studies suggest that sensory tetanisation may be unreliable. We review these contrasting effects, conduct our own study of auditory and visual tetanisation, and perform meta-analyses to determine the average effect of sensory tetanisation across studies. We measured auditory-evoked amplitude changes in a group of younger (18-29 years of age) and older (55-83 years of age) adults following tetanisation to 1 and 4 kHz tone bursts and following a slow-presentation control. We also measured visual-evoked amplitude changes following tetanisation to horizontal and vertical sign gradients. Auditory and visual response amplitudes decreased following tetanisation, consistent with some studies but contrasting with others finding amplitude increases (i.e. LTP-like changes). Older adults exhibited more modest auditory-evoked amplitude decreases, but visual-evoked amplitude decreases like those of younger adults. Changes in response amplitude were not specific to tetanised stimuli. Importantly, slow presentation of auditory tone bursts produced response amplitude changes approximating those observed following tetanisation in younger adults. Meta-analyses of visual and auditory tetanisation studies found that the overall effect of sensory tetanisation was not significant across studies or study sites. The results suggest that sensory tetanisation may not produce reliable changes in cortical responses and more work is needed to determine the validity of sensory tetanisation as a method for inducing human cortical plasticity in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772088PMC
http://dx.doi.org/10.1111/ejn.15847DOI Listing

Publication Analysis

Top Keywords

sensory tetanisation
28
auditory visual
12
tetanisation
12
tetanisation studies
12
amplitude changes
12
tetanisation induce
8
induce long-term-potentiation-like
8
cortical plasticity
8
presentation auditory
8
ltp-like changes
8

Similar Publications

There is great interest in developing non-invasive approaches for studying cortical plasticity in humans. High-frequency presentation of auditory and visual stimuli, or sensory tetanisation, can induce long-term-potentiation-like (LTP-like) changes in cortical activity. However, contrasting effects across studies suggest that sensory tetanisation may be unreliable.

View Article and Find Full Text PDF

In the hippocampus in vivo, both synaptic plasticity and network activity are closely interdependent. We have found that immediately after an attempt to induce long-term potentiation (LTP), changes in theta (5-10 Hz) and gamma (30-100 Hz) activity correlate tightly with the occurrence of LTP, suggesting that tetanisation-driven activation of sensory inputs synchronises the activity of granule cells and interneurons, and thus, facilitates the encoding of acquired stimuli. This results in increase of theta and gamma power, and elevates the probability that afferent stimuli both coincide with the peak of theta cycle and reach their post-synaptic target within the gamma time-window (of 10-30 ms).

View Article and Find Full Text PDF

A role for oscillatory activity in hippocampal neuronal networks has been proposed in sensory encoding, cognitive functions and synaptic plasticity. In the hippocampus, theta (5-10 Hz) and gamma (30-100 Hz) oscillations may provide a mechanism for temporal encoding of information, and the basis for formation and retrieval of memory traces. Long-term potentiation (LTP) of synaptic transmission, a candidate cellular model of synaptic information storage, is typically induced by high-frequency tetanisation (HFT) of afferent pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!