Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography.

Cereb Cortex

Department of Mechanical Engineering, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, 756-0884, Sanyo-Onoda, Yamaguchi, Japan.

Published: April 2023

Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering changes: (i) hemodynamic responses such as changes in blood volume and in density of blood cells and (ii) reorientation of dipoles in cellular membrane. However, it has not been clarified which is the major contributor to fOCT signals. Furthermore, previous studies showed both increase and decrease of reflectivity as fOCT signals, making interpretation more difficult. We proposed combination of fOCT with Fourier imaging and adaptive statistics to the rat barrel cortex. Active voxels revealed barrels elongating throughout layers with mini-columns in superficial layers consistent with physiological studies, suggesting that active voxels revealed by fOCT reflect spatial patterns of activated neurons. These voxels included voxels with negative changes in reflectivity and those with positive changes in reflectivity. However, they were temporally mirror-symmetric, suggesting that they share common sources. It is hard to explain that hemodynamic responses elicit positive signals in some voxels and negative signals in the other. On the other hand, considering membrane dipoles, polarities of OCT signals can be positive and negative depending on orientations of scattering particles relative to the incident light. Therefore, the present study suggests that fOCT signals are induced by the reorientation of membrane dipoles.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhac388DOI Listing

Publication Analysis

Top Keywords

foct signals
12
rat barrel
8
barrel cortex
8
optical coherence
8
coherence tomography
8
light scattering
8
scattering changes
8
hemodynamic responses
8
active voxels
8
voxels revealed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!