Solid-state heterointerfaces are of interest for emergent local behavior that is distinct from either bulk parent compound. One technologically relevant example is the case of mixed ionic/electronic conductor (MIEC)-metal interfaces, which play an important role in electrochemistry. Metal-MIEC composite electrodes can demonstrate improved catalytic activity vs single-phase MIECs, improving fuel cell efficiency. Similarly, MIEC surface reaction kinetics are often evaluated using techniques that place metal current collectors in contact with the surface under evaluation, potentially altering the response vs the native surface. Techniques enabling direct and local in situ observation of the behavior at and around such heterointerfaces are needed. Here, we develop a spatially resolved optical transmission relaxation (2D-OTR) method providing continuous evaluation of local, high-temperature, controlled atmosphere defect kinetics across a ∼1 cm sample area simultaneously in a contact-free manner. We apply it to observe the spatial variance of oxygen incorporation and evolution rates at ∼525-620 °C, in response to step changes in oxygen partial pressure, on MIEC SrTiFeO films as a function of distance from porous Pt and Au layers. Using this model geometry, we find significant enhancements in kinetics adjacent to the metals that decay over a few millimeter distance. To extract kinetic parameters, we fit the short-term optical data (initial portion of relaxations) with an exponential decay function appropriate for surface-exchange-limited kinetics, yielding apparent surface exchange coefficients () with spatial resolution, decreasing with distance from the metal. To understand the kinetic processes governing the complete (long-term) optical relaxations, we performed COMSOL simulations, which demonstrated that a combination of laterally varying and in-plane diffusion controls the observed kinetics over the full time range. Further support for spatially varying comes from demonstrations of changing surface and bulk chemistry vs distance from the metal-MIEC interface, by X-ray photoelectron and optical absorption spectroscopies, respectively. Although microporous Pt and Au are not excellent electrodes in isolation, both metals exert a synergistic effect on the oxygen surface exchange rate in the presence of the mixed conducting film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12184 | DOI Listing |
Environ Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.
The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.
View Article and Find Full Text PDFCannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!