Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise, as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age- and sex-matched sham-operated controls. Skeletal parameters, locomotor function, and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post-injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that whereas younger rats might re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared with middle-aged SCI rats, with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, whereas both young and middle-aged female SCI rats had lower bone formation in the subchronic but not the chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, whereas aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex- and age-dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2022.0342DOI Listing

Publication Analysis

Top Keywords

sci rats
20
sci
18
bone
16
female rats
16
chronic phase
16
rats
14
bone loss
12
sci middle-aged
12
trabecular bone
12
bone volume
12

Similar Publications

This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats.

View Article and Find Full Text PDF

Background: Roof rats (Rattus rattus) are a substantial pest throughout citrus crops, yet little is known about efficacious, cost-effective strategies to manage this rodent. Therefore, we developed two integrated pest management (IPM) programs that incorporated elevated bait stations containing diphacinone-treated oats and trapping, and we compared those programs to a bait-station only approach to determine which strategies were most practical for the management of roof rats in citrus orchards.

Results: Bait applications substantially reduced rat activity within orchards.

View Article and Find Full Text PDF

Pulsed electromagnetic field prevents tooth relapse after orthodontic tooth movement in rat models.

J Taibah Univ Med Sci

February 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, Indonesia.

Objective: Relapse after orthodontic treatment remains a crucial problem. Pulsed electromagnetic fields (PEMFs) accelerate osteoblastogenesis and inhibit osteoclastogenesis. However, their effect on tooth movement during the retention phase of orthodontic treatment has not been studied.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is considered one of the most common metabolic disorders worldwide. Although the pathoetiology of NAFLD is not fully elucidated, recent evidence suggests the involvement of stress, inflammation, and programmed death in the onset and progression of the disease. This investigation aimed to evaluate the effects of ellagic acid (EA), a known herbal antioxidant, on a high-fat diet (HFD)-induced animal model of NAFLD by evaluating the status of lipid profile, necroptosis (RIPK1, RIPK3, and MLKL), autophagy (LC3, ATG5, and BECN1), inflammation (TNF-α, IL-6, IL-4, and IL-10), and stress (SOD, CAT, GR, GPx, and MDA).

View Article and Find Full Text PDF

Monosodium glutamate (MSG), a widely used food additive, has been associated with various health concerns, including potential reproductive toxicity. This study investigated the protective effects of black garlic (BG) ethanol extract against MSG-induced ovarian damage in rats. Thirty-two female rats in estrus were randomly divided into four groups ( = 8 per group): control (saline), BG (250 mg/kg BW), MSG (4 mg/g BW), and BG+MSG (combined treatment).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!