The orbital cortex (ORB) of the rat consists of five divisions: the medial (MO), ventral (VO), ventrolateral (VLO), lateral (LO), and dorsolateral (DLO) orbital cortices. No previous report has comprehensively examined and compared projections from each division of the ORB to the thalamus. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we describe the efferent projections from the five divisions of the ORB to the thalamus in the rat. We demonstrated that, with some overlap, each division of the ORB distributed in a distinct (and unique) manner to nuclei of the thalamus. Overall, ORB projected to a relatively restricted number of sites in the thalamus, and strikingly distributed entirely to structures of the medial/midline thalamus, while completely avoiding lateral regions or principal nuclei of the thalamus. The main termination sites in the thalamus were the paratenial nucleus (PT) and nucleus reuniens (RE) of the midline thalamus, the medial (MDm) and central (MDc) divisions of the mediodorsal nucleus, the intermediodorsal nucleus, the central lateral, paracentral, and central medial nuclei of the rostral intralaminar complex and the submedial nucleus (SM). With some exceptions, medial divisions of the ORB (MO, VO) mainly targeted "limbic-associated" nuclei such as PT, RE, and MDm, whereas lateral division (VLO, LO, DLO) primarily distributed to "sensorimotor-associated" nuclei including MDc, SM, and the rostral intralaminar complex. As discussed herein, the medial/midline thalamus may represent an important link (or bridge) between the orbital cortex and the hippocampus and between the ORB and medial prefrontal cortex. In summary, the present results demonstrate that each division of the orbital cortex projects in a distinct manner to nuclei of the thalamus which suggests unique functions for each division of the orbital cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772129 | PMC |
http://dx.doi.org/10.1002/cne.25419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!