Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1β and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1β and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1β secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation , as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550078 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.912069 | DOI Listing |
Int J Nanomedicine
December 2024
Affiliated Hospital, Qinghai University, Xining, Qinghai, People's Republic of China.
Background: Acacetin (AC) is a flavonoid compound with antiperoxidant, anti-inflammatory, and antiplasmodial activity. However, the solubility of AC is poor and nano acacetin (Nano AC) was synthesized. The intestinal mucosal barrier is impaired in sepsis rats, and the protective effects and mechanism of AC and Nano AC on the intestinal mucosal barrier are unclear.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
Gestational diabetes mellitus (GDM) is a common metabolic disorder during pregnancy characterized by glucose intolerance, which poses risks to both maternal and fetal health. Baicalein, a flavonoid derived from the roots of Georgi, exhibits various biological functions and has been implicated in the modulation of several diseases. However, the regulatory effects and underlying mechanisms of Baicalein in GDM progression remain unclear.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730000, China. Electronic address:
Aimed to enhance the anti-inflammatory activity of caffeic acid phenethyl ester (CAPE), the oxadiazole derivatives were synthesized by substituting its ester group. The structure-activity relationships revealed that the electron-withdrawing group in the phenethyl moiety enhanced anti-inflammatory activity. The order of activity potency was F ≥ CF > Cl > NO > CN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!