Vegetable glycerin (VG) and propylene glycol (PG) serve as delivery vehicles for nicotine and flavorings in most e-cigarette (e-cig) liquids. Here, we investigated whether VG e-cig aerosols, in the absence of nicotine and flavors, impact parameters of mucociliary function in human volunteers, a large animal model (sheep), and air-liquid interface (ALI) cultures of primary human bronchial epithelial cells (HBECs). We found that VG-containing (VG or PG/VG), but not sole PG-containing, e-cig aerosols reduced the activity of nasal cystic fibrosis transmembrane conductance regulator (CFTR) in human volunteers who vaped for seven days. Markers of inflammation, including interleukin-6 (IL6), interleukin-8 (IL8) and matrix metalloproteinase-9 (MMP9) mRNAs, as well as MMP-9 activity and mucin 5AC (MUC5AC) expression levels, were also elevated in nasal samples from volunteers who vaped VG-containing e-liquids. In sheep, exposures to VG e-cig aerosols for five days increased mucus concentrations and MMP-9 activity in tracheal secretions and plasma levels of transforming growth factor-beta 1 (TGF-β1). exposure of HBECs to VG e-cig aerosols for five days decreased ciliary beating and increased mucus concentrations. VG e-cig aerosols also reduced CFTR function in HBECs, mechanistically by reducing membrane fluidity. Although VG e-cig aerosols did not increase MMP9 mRNA expression, expression levels of IL6, IL8, TGFB1, and MUC5AC mRNAs were significantly increased in HBECs after seven days of exposure. Thus, VG e-cig aerosols can potentially cause harm in the airway by inducing inflammation and ion channel dysfunction with consequent mucus hyperconcentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549247 | PMC |
http://dx.doi.org/10.3389/fphar.2022.1012723 | DOI Listing |
Int J Environ Res Public Health
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA.
The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.
View Article and Find Full Text PDFTobacco use is the leading cause of death globally and in the U.S. After decades of decline, driven by decreases in combusted tobacco use, nicotine product use has increased due to Electronic Nicotine Delivery Systems (ENDS), also known as e-cigarettes or vapes.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
VA San Diego Healthcare System, San Diego, California, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA.
Inhaling aerosols from electronic nicotine delivery systems, such as e-cigarettes (e-cigs), may pose health risks beyond those caused by nicotine intake. Exposure to e-cig aerosols can lead to the release of exosomes and metabolites into the bloodstream, potentially affecting mitochondrial physiology across the body, leading to chronic inflammatory diseases. In this study we assessed the effects of e-cig use by young healthy human subjects on the circulating exosome profile and markers of cell stress, and also defined the effects of e-cig user plasma on mitochondrial function in endothelial cells (EA.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFBackground: Vaping is touted as a safer alternative to traditional cigarette smoking, but the full spectrum of harm reduction versus comparable risk remains unresolved. Elevated bioavailability of nicotine in vape aerosol together with known risks of nicotine exposure may result in previously uncharacterized cardiovascular consequences of vaping. The objective of this study is to assess the impact of nicotine exposure via vape aerosol inhalation upon myocardial response to infarction injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!