The vertebrate neural tube is a representative example of a morphogen-patterned tissue that generates different cell types with spatial and temporal precision. More specifically, the development of the dorsal region of the neural tube is of particular interest because of its highly dynamic behavior. First, early premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition, exit the neural primordium, and generate, among many derivatives, most of the peripheral nervous system. Subsequently, the dorsal neural tube becomes populated by definitive roof plate cells that constitute an organizing center for dorsal interneurons and guide axonal patterning. In turn, roof plate cells transform into dorsal radial glia that contributes to and shapes the formation of the dorsal ependyma of the central nervous system. To form a normal functional spinal cord, these extraordinary transitions should be tightly regulated in time and space. Thus far, the underlying cellular changes and molecular mechanisms are only beginning to be uncovered. In this review, we discuss recent results that shed light on the end of neural crest production and delamination, the early formation of the definitive roof plate, and its further maturation into radial glia. The last of these processes culminate in the formation of the dorsal ependyma, a component of the stem cell niche of the central nervous system. We highlight how similar mechanisms operate throughout these transitions, which may serve to reveal common design principles applicable to the ontogeny of epithelial tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523542 | PMC |
http://dx.doi.org/10.12703/r/11-27 | DOI Listing |
Single-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF.
View Article and Find Full Text PDFSci Rep
January 2025
Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.
View Article and Find Full Text PDFTunis Med
January 2025
Department of embryo-fetopathology, La Rabta Maternity and Neonatology Center, El Manar II University, 1007 Tunis, Tunisia.
Introduction: Anencephaly is a serious developmental defect of the central nervous system in which the brain and cranial vault are grossly malformed. The cerebrum and cerebellum are reduced or absent, but the hindbrain is present. Anencephaly is a part of the neural tube defect spectrum.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325035, China. Electronic address:
For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.
View Article and Find Full Text PDFEur J Epidemiol
January 2025
Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 100, Section 1, Economic and Trade Road, Beitun District, Taichung, 406040, Taiwan, Republic of China.
Although several environmental factors may increase the risk of nervous system anomalies, the association between exposure to particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM) and nervous system anomalies is not completely understood. This study aimed to examine the association between expoure to PM and nervous system anomalies, including specific phenotypes during preconception and early pregnancy and determine the crucial time windows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!