Three-Dimensional (3D) light-field display has achieved promising improvement in recent years. However, since the dense-view images cannot be collected fast in real-world 3D scenes, the real-time 3D light-field display is still challenging to achieve in real scenes, especially at the high-resolution 3D display. Here, a real-time 3D light-field display method with dense-view is proposed based on image color correction and self-supervised optical flow estimation, and a high-quality and high frame rate of 3D light-field display can be realized simultaneously. A sparse camera array is firstly used to capture sparse-view images in the proposed method. To eliminate the color deviation of the sparse views, the imaging process of the camera is analyzed, and a practical multi-layer perception (MLP) network is proposed to perform color calibration. Given sparse views with consistent color, the optical flow can be estimated by a lightweight convolutional neural network (CNN) at high speed, which uses the input image pairs to learn the optical flow in a self-supervised manner. With inverse warp operation, dense-view images can be synthesized in the end. Quantitative and qualitative experiments are performed to evaluate the feasibility of the proposed method. Experimental results show that over 60 dense-view images at a resolution of 1024 × 512 can be generated with 11 input views at a frame rate over 20 fps, which is 4× faster than previous optical flow estimation methods PWC-Net and LiteFlowNet3. Finally, large viewing angles and high-quality 3D light-field display at 3840 × 2160 resolution can be achieved in real-time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.461789 | DOI Listing |
Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.
View Article and Find Full Text PDFNanophotonics
April 2024
Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China.
Recently, multifunctional metasurface has showcased its powerful functionality to integrate nanoprinting and holography, and display ultracompact meta-images in near- and far-field simultaneously. Herein, we propose a tri-channel metasurface which can further extend the meta-imaging ranges, with three independent images located at the interface, Fresnel and Fourier domains, respectively. Specifically, a structural-color nanoprinting image is decoded right at the interface of the metasurface, enabled by varying the dimensions of nanostructures; a Fresnel holographic image and another Fourier holographic image are present at the Fresnel and Fourier (far-field) domains, respectively, enabled by geometric phase.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Manipulating circular dichroism in chiral metasurfaces has been increasingly important for a wide range of polarization-sensitive photonic applications. However, simple methods for presenting chiral nanostructures with tunable and considerable chiroptical responses in the near-infrared-I regime remains underexplored. Herein, two sheets of suspended symmetric bilayer metagratings fabricated single-step electron beam lithography are stacked into a moiré metasurface with its circular dichroism value reaching up to 20.
View Article and Find Full Text PDFCombining the propagation and geometric phases in a metasurface facilitates the independent control of multiple parameters of the light field. However, the geometric phase often displays a random distribution, making it difficult to observe directly. We introduce a frequency-dependent phase response: at frequency f, there is a superposition of the geometric and propagation phases, whereas at frequency f, the propagation phase remains constant, and only the geometric phase is applied.
View Article and Find Full Text PDFThe multi-layer compressive light field (CLF) three-dimensional (3D) display suffers from image artifacts due to layer misalignment. In this paper, we propose to reduce the image artifacts by improving the intensity distribution uniformity of the layer images. To achieve this, a global optimization algorithm based on gradient descent (GD) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!