We present the numerical analysis of the effect of the temporarily partially coherent illumination on the phase measurement accuracy in digital holography microscopy (DHM) and optical diffraction tomography (ODT), as reconstruction algorithms tend to assume purely monochromatic conditions. In the regime of reduced temporal coherence, we simulate the hologram formation in two different optical setups, representing classical off-axis two-beam and grating common-path configurations. We consider two ODT variants: with sample rotation and angle-scanning of illumination. Besides the coherence degree of illumination, our simulation considers the influence of the sample normal dispersion, shape of the light spectrum, and optical parameters of the imaging setup. As reconstruction algorithms we employ Fourier hologram method and first-order Rytov approximation with direct inversion and nonnegativity constraints. Quantitative evaluation of the measurement results deviations introduced by the mentioned error sources is comprehensively analyzed, for the first time to the best of our knowledge. Obtained outcomes indicate low final DHM/ODT reconstruction errors for the grating-assisted common-path configuration. Nevertheless, dispersion and asymmetric spectrum introduce non-negligible overestimated refractive index values and noise, and should be thus carefully considered within experimental frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.458167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!