The principle of phase-preserving regeneration is revealed by a simple theoretical model, that is, in the regenerated signals the linear phase shift component is dominant over the nonlinear counterpart for phase-preserving amplitude regeneration (PPAR). A Mach-Zehnder- interferometer (MZI)-nested nonlinear optical loop mirror (NOLM) PPAR scheme is proposed and verified by theory and experiment. Our experiment shows that for QPSK regeneration the noise reduction ratio in terms of error vector magnitude (EVM) is linearly dependent on the input signal-to-noise ratio (SNR) with the slope of 0.78 and the average phase disturbation is 4.37 degree, close to the theoretical value of 3.8 degrees. The influence of the optical couplers on the PPAR performance is in detail discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.456384DOI Listing

Publication Analysis

Top Keywords

phase-preserving principle
4
principle all-optical
4
all-optical regenerators
4
regenerators applications
4
applications mzi-nested
4
mzi-nested nolm
4
nolm structure
4
structure principle
4
principle phase-preserving
4
phase-preserving regeneration
4

Similar Publications

The principle of phase-preserving regeneration is revealed by a simple theoretical model, that is, in the regenerated signals the linear phase shift component is dominant over the nonlinear counterpart for phase-preserving amplitude regeneration (PPAR). A Mach-Zehnder- interferometer (MZI)-nested nonlinear optical loop mirror (NOLM) PPAR scheme is proposed and verified by theory and experiment. Our experiment shows that for QPSK regeneration the noise reduction ratio in terms of error vector magnitude (EVM) is linearly dependent on the input signal-to-noise ratio (SNR) with the slope of 0.

View Article and Find Full Text PDF

Optical scanning holography (OSH) involves the principles of optical scanning and heterodyning. The use of heterodyning leads to phase-preserving, which is the basic idea of holography. While heterodyning has numerous advantages, it requires complicated and expensive electronic processing.

View Article and Find Full Text PDF

Directional amplification, in which signals are selectively amplified depending on their propagation direction, has attracted much attention as key resource for applications, including quantum information processing. Recently, several, physically very different, directional amplifiers have been proposed and realized in the lab. In this work, we present a unifying framework based on topology to understand non-reciprocity and directional amplification in driven-dissipative cavity arrays.

View Article and Find Full Text PDF

Three-Dimensional Imaging of Terahertz Circular SAR with Sparse Linear Array.

Sensors (Basel)

July 2018

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Due to the non-contact detection ability of radar and the harmlessness of terahertz waves to the human body, three-dimensional (3D) imaging using terahertz synthetic aperture radar (SAR) is an efficient method of security detection in public areas. To achieve high-resolution and all aspect imaging, circular trajectory movement of radar and linear sensor array along the height direction were used in this study. However, the short wavelength of terahertz waves makes it practically impossible for the hardware to satisfy the half-wavelength spacing condition to avoid grating lobes.

View Article and Find Full Text PDF

Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror.

Opt Express

February 2008

Institute of Optics Information and Photonics, Max-Planck Research Group, Universtiy Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, building 24, 91058 Erlangen, Germany.

We propose a modified nonlinear amplifying loop mirror (NALM) for phase-preserving 2R regeneration of wavelength division multiplexed (WDM) return-to-zero differential phase-shift-keyed signals. As proof of principle the regeneration capability of this NALM setup has been investigated experimentally for two 10 Gbit/s wavelength channels. A significant eye-opening improvement and a negative power penalty of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!