We demonstrate a monolithically integrated photonic integrated circuit (PIC) for terahertz spectroscopy with wide spectral bandwidth. The PIC includes two widely tunable sampled grating DBR (SG DBR) lasers, semiconductor optical amplifiers (SOAs), and passive components to combine signals. The SG DBR lasers cover 22 nm and 24 nm tuning range, respectively, with 4 nm overlap in the C band. The side mode suppression ratio (SMSR) exceeds 37 dB with a linewidth below 4.3 MHz. We used the PIC to generate THz radiation with a state-of-the-art photodiode emitter. The measured THz power spectrum between 0.03 and 1 THz compares well with the spectrum generated with commercial tunable laser sources. This demonstrates the suitability of our PIC for future miniaturized continuous wave (cw) THz systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.454296DOI Listing

Publication Analysis

Top Keywords

photonic integrated
8
integrated circuit
8
sampled grating
8
dbr lasers
8
circuit sampled
4
grating lasers
4
lasers fabricated
4
fabricated generic
4
generic foundry
4
foundry platform
4

Similar Publications

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

This study presents a cutting-edge imaging technique for special unmanned vehicles (UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging inspired by the human visual system with lateral inhibition and variable resolution to improve environmental perception in challenging conditions, such as poor lighting and dust. By emulating the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency and quality of image reconstruction for fine targets within the region of interest (ROI).

View Article and Find Full Text PDF

An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma.

Adv Mater

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.

The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!