Objective: To analyze the effects of bone marrow mesenchyml stem cells (BMSCs) on bone alkaline phosphatase (BALP)/C-terminal telopeptide of type-Ⅰ collagen (CTX-1) expression and mechanical dynamics in rats with osteoporotic (OP) vertebral fracture.
Methods: A total of 60 female Sprague-Dawley rats were evenly divided into three groups, a control group that received sham operation (sham group), a group consisting of rats with OP vertebral fracture (OP group), and the last group consisting of OP vertebral fracture rats given BMSCs treatment (BMSCs group). Comparison of the three groups of animals was made in terms of bone dynamic change, bone quantitative broadband ultrasound attenuation (BUA) measurement, and bone mineral density (BMD). HE staining was done to examine the bone histological morphological parameters of the vertebral body. Serum CTX-1 and BALP levels were determined by ELISA.
Results: Mechanical comparison showed that there were significant differences in mechanical changes of L vertebra body and right femur among the three experimental groups ( <0.05). The elastic modulus and maximum load of the OP group significantly decreased compared with those of the sham group ( <0.05). After the intervention, the maximum load and elastic modulus of the BMSCs group were significantly higher than those of the OP group ( <0.05). Compared with the sham group, BUA and BMD values in the OP group were significantly downregulated ( <0.05). After intervention, BUA and BMD of the BMSCs group were significantly higher than those of the OP group and were comparable to those of the sham group ( <0.05). Compared with the sham group, the number of trabeculae in the OP group was significantly fewer, and the distribution of trabeculae was disorderly and lacked regularity. Compared with the OP group, there were more trabeculae in the BMSCs group, and their distribution was more regular. Compared with sham group, bone histological morphological parameters of the vertebral body of rats in the OP group were significantly changed--mean trabecular plate thickness (MTPT) and trabecular bone volume (TBV) parameters were significantly decreased, while mineral apposition rate (MAR) and trabecula bone surface (TRS) parameters were significantly upregulated (all <0.05). After the experimental intervention, bone histological morphological parameters of the vertebral body in the BMSCs group showed significant improvement compared with those of the OP group ( <0.05). Compared with the sham group, serum BALP content in the OP group was greatly decreased, while the CTX-1 level was upregulated ( <0.05). After the intervention, the BMSCs group had higher serum BALP content than that of the OP group and substantially lower CTX-1 content than that of the OP group ( <0.05).
Conclusion: BMSCs can improve the mechanical changes in rats with OP vertebral fracture, and can increase the maximum load and elastic modulus of bone tissue. In addition, BMSCs can upregulate the expression of BALP in serum and downregulate the expression of CTX-1, thus helping rats with OP vertebral fracture heal early.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408791 | PMC |
http://dx.doi.org/10.12182/20220960506 | DOI Listing |
Cytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFCytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFBone Marrow Transplant
January 2025
Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-, 25000, Besançon, France.
The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.
View Article and Find Full Text PDFNat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFJ Clin Lipidol
December 2024
Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.
Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!