Small cell lung cancer (SCLC) is one of the most malignant types of lung cancer. Cancer stem cell (CSC) and tumor immune evasion are critical for the development of SCLC. We previously reported that NDR1 enhances breast CSC properties. NDR1 might also have a role in the regulation of immune responses. In the current study, we explore the function of NDR1 in the control of CSC properties and evasion of phagocytosis in SCLC. We find that NDR1 enhances the enrichment of the ALDEFLUOR and CD133 population, and promotes sphere formation in SCLC cells. Additionally, NDR1 upregulates CD47 expression to enhance evasion of phagocytosis in SCLC. Furthermore, the effects of NDR1 enhanced CD47 expression and evasion of phagocytosis are more prominent in CSC than in non-CSC. Importantly, NDR1 promotes ASCL1 expression to enhance NDR1-promoted CSC properties and evasion of phagocytosis in SCLC cells. Mechanically, NDR1 enhances protein stability and the nuclear location of ASCL1 to activate the transcription of CD47 in SCLC. Finally, CD47-blocking antibody can be used to target NDR1 enhanced CSC properties and evasion of phagocytosis by suppressing EGFR activation in SCLC. In summary, our data indicate that NDR1 could be a critical factor for modulating CSC properties and phagocytosis in SCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-022-01859-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!