Background: N1-methyladenosine (m1A) is a reversible post-transcriptional modification in mRNA, which has been proved to play critical roles in various biological processes through interaction with different m1A regulators. There are several m1A regulators existing in the human genome, including YTHDF1-3 and YTHDC1.
Methods: Several techniques have been developed to identify the substrates of m1A regulators, but their binding specificity and biological functions are not yet fully understood due to the limitations of wet-lab approaches. Here, we submitted the framework m1ARegpred (m1A regulators substrate prediction), which is based on machine learning and the combination of sequence-derived and genome-derived features.
Results: Our framework achieved area under the receiver operating characteristic (AUROC) scores of 0.92 in the full transcript model and 0.857 in the mature mRNA model, showing an improvement compared to the existing sequence-derived methods. In addition, motif search and gene ontology enrichment analysis were performed to explore the biological functions of each m1A regulator.
Conclusions: Our work may facilitate the discovery of m1A regulators substrates of interest, and thereby provide new opportunities to understand their roles in human bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2709269 | DOI Listing |
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets.
View Article and Find Full Text PDFFront Immunol
December 2024
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
N1-methyladenosine (m1A) modification is an epigenetic change that occurs on RNA molecules, regulated by a suite of enzymes including methyltransferases (writers), demethylases (erasers), and m1A-recognizing proteins (readers). This modification significantly impacts the function of RNA and various biological processes by affecting the structure, stability, translation, metabolism, and gene expression of RNA. Thereby, m1A modification is closely associated with the occurrence and progression of cancer.
View Article and Find Full Text PDFExp Ther Med
January 2025
Department of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China.
N-methyladenosine (m1A), a methylation of RNA, is gaining attention for its role in diverse biological processes. However, the potential roles of m1A regulatory-mediated methylation modifications in multiple myeloma (MM) remain unclear. The mRNA expression of m1A regulators in normal plasma (NP; n=9) and MM (n=174) bone marrow plasma cells was investigated and the m1A modification patterns of 559 MM samples based on the expression of 10 m1A-related regulatory genes were comprehensively evaluated.
View Article and Find Full Text PDFMol Biol Rep
November 2024
Department of breast surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
Microorganisms
November 2024
Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!