Transposable elements (TEs) comprise large fractions of eukaryotic genomes, but their repetitive nature and high copy number makes bioinformatic analyses more complex. Here, we report three robust pipelines to analyze TE expression from RNA-seq data in a non-model organism, the African turquoise killifish Our protocol can be run with either a genomic or transcriptomic reference depending on available computational resources, with options both for limited memory usage and for more computationally intensive analyses. Our protocol leverages both standard software for classical RNA-seq analysis pipelines as well as software specialized for TEs. This protocol uses input RNA-seq data from Illumina reads and can use data in either single-end or paired-end layout. Here, we show how to start from input RNA-seq data from aging killifish tissues using a publicly available data set from which we take single and paired reads, trim adapters, align and count trimmed reads, and perform differential expression analyses for TEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812909 | PMC |
http://dx.doi.org/10.1101/pdb.prot107748 | DOI Listing |
BMC Bioinformatics
January 2025
Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA. Electronic address:
Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.
View Article and Find Full Text PDFBioinformatics
January 2025
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.
Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!