AI Article Synopsis

  • Focal cortical dysplasias (FCD) are often undetected on standard MRI and can cause drug-resistant epilepsy in children; this study aimed to explore using resting state functional MRI (rs-fMRI) for better detection.
  • Researchers included pediatric patients with FCD and healthy controls, analyzing various metrics from the rs-fMRI data to assess their diagnostic potential.
  • Results showed that certain fMRI measurements, particularly regional homogeneity (ReHo), were significantly altered in FCD patients, suggesting that rs-fMRI could be a valuable tool for identifying MRI-negative FCDs in clinical settings.

Article Abstract

Background: Focal cortical dysplasias (FCD) are a frequent cause of drug-resistant epilepsy in children but are often undetected on structural magnetic resonance imaging (MRI). We aimed to measure and validate the variation of resting state functional MRI (rs-fMRI) blood oxygenation level dependent (BOLD) metrics in surgically proven FCDs in children, to assess the potential yield for detecting and understanding these lesions.

Methods: We prospectively included pediatric patients with surgically proven FCD with inconclusive structural MRI and healthy controls, who underwent a ten-minute rs-fMRI acquired at 3T. Rs-fMRI data was pre-processed and maps of values of regional homogeneity (ReHo), degree centrality (DC), amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) were calculated. The variations of BOLD metrics within the to-be-resected areas were analyzed visually, and quantitatively using lateralization indices. BOLD metrics variations were also analyzed in fluorodeoxyglucose-positron emission tomography (FDG-PET) hypometabolic areas.

Results: We included 7 patients (range: 3-15 years) and 6 aged-matched controls (range: 6-17 years). ReHo lateralization indices were positive in the to-be-resected areas in 4/7 patients, and in 6/7 patients in the additional PET hypometabolic areas. These indices were significantly higher compared to controls in 3/7 and 4/7 patients, respectively. Visual analysis revealed a good spatial correlation between high ReHo areas and MRI structural abnormalities (when present) or PET hypometabolic areas. No consistent variation was seen using DC, ALFF, or fALFF.

Conclusion: Resting-state fMRI metrics, noticeably increase in ReHo, may have potential to help detect MRI-negative FCDs in combination with other morphological and functional techniques, used in clinical practice and epilepsy-surgery screening.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1959-9241DOI Listing

Publication Analysis

Top Keywords

bold metrics
12
blood oxygenation
8
oxygenation level
8
level dependent
8
focal cortical
8
cortical dysplasias
8
surgically proven
8
to-be-resected areas
8
lateralization indices
8
4/7 patients
8

Similar Publications

Background: Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.

View Article and Find Full Text PDF

A preliminary study of fMRI and the relationship with depression and anxiety in Meniere's patients.

Am J Otolaryngol

December 2024

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, PR China. Electronic address:

Purpose: To examine alterations in Blood Oxygen Level-Dependent (BOLD) resting-state functional magnetic resonance imaging (rs-fMRI) signals, utilizing regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) metrics, within activated brain regions. Additionally, this study aims to explore the relationship between these neural changes and clinical characteristics, as well as emotional states, in patients diagnosed with unilateral Meniere's disease (MD).

Method: The study included 24 patients diagnosed with left Meniere's disease (L-MD), 25 patients diagnosed with right Meniere's disease (R-MD), and 23 healthy control subjects.

View Article and Find Full Text PDF

Cyclic vomiting syndrome (CVS) is a disorder of brain-gut interaction characterized by recurrent episodes of nausea and vomiting interspersed with asymptomatic periods and associated with autonomic nervous system dysfunction. We examined the dysautonomic response to noxious stimuli seen in CVS patients using our previously validated approach to integrate peripheral autonomic outflow metrics, temporal summation of pain, and brain fMRI. BOLD fMRI and ECG were acquired from CVS patients and healthy adults during a rest condition and a sustained cuff pressure pain stimulus at the leg.

View Article and Find Full Text PDF

Stimulus-induced rotary saturation imaging of visually evoked response: A pilot study.

NMR Biomed

January 2025

Support Centre for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

Spin-lock (SL) pulses have been proposed to directly detect neuronal activity otherwise inaccessible through standard functional magnetic resonance imaging. However, the practical limits of this technique remain unexplored. Key challenges in SL-based detection include ultra-weak signal variations, sensitivity to magnetic field inhomogeneities, and potential contamination from blood oxygen level-dependent effects, all of which hinder the reliable isolation of neuronal signals.

View Article and Find Full Text PDF

Purpose: To develop a single-shot SNR-efficient distortion-free multi-echo imaging technique for dynamic imaging applications.

Methods: Echo planar time-resolved imaging (EPTI) was first introduced as a multi-shot technique for distortion-free multi-echo imaging. This work aims to develop single-shot EPTI (ss-EPTI) to achieve improved robustness to motion/physiological noise, increased temporal resolution, and higher SNR efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!