Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Goal-directed navigation requires learning to accurately estimate location and select optimal actions in each location. Midbrain dopamine neurons are involved in reward value learning and have been linked to reward location learning. They are therefore ideally placed to provide teaching signals for goal-directed navigation. By imaging dopamine neural activity as mice learned to actively navigate a closed-loop virtual reality corridor to obtain reward, we observe phasic and pre-reward ramping dopamine activity, which are modulated by learning stage and task engagement. A Q-learning model incorporating position inference recapitulates our results, displaying prediction errors resembling phasic and ramping dopamine neural activity. The model predicts that ramping is followed by improved task performance, which we confirm in our experimental data, indicating that the dopamine ramp may have a teaching effect. Our results suggest that midbrain dopamine neurons encode phasic and ramping reward prediction error signals to improve goal-directed navigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631116 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!