Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI data is characterized by high dimensionality and low signal-to-noise ratio. This process can be improved by the incorporation of precise prior knowledge, which is hard to obtain in most cases. In this study, we show that the incorporation of partial or coarse prior knowledge from different sources such as reference images or biological knowledge may also help to improve MSI segmentation results. Here, we propose a novel interactive segmentation strategy for MSI data called iSegMSI, which incorporates prior information in the form of scribble-regularization of the unsupervised model to fine-tune the segmentation results. By using two typical MSI data sets (including a whole-body mouse fetus and human thyroid cancer), the present results demonstrate the effectiveness of the iSegMSI strategy in improving the MSI segmentations. Specifically, the method can be used to subdivide a region into several subregions specified by the user-defined scribbles or to merge several subregions into a single region. Additionally, these fine-tuned results are highly tolerant to the imprecision of the scribbles. Our results suggest that the proposed iSegMSI method may be an effective preprocessing strategy to facilitate the analysis of MSI data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c01456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!