Electrically addressable integrated intelligent terahertz metasurface.

Sci Adv

Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

Published: October 2022

Reconfigurable intelligent surfaces (RISs) play an essential role in various applications, such as next-generation communication, uncrewed vehicles, and vital sign recognizers. However, in the terahertz (THz) region, the development of RISs is limited because of lacking tunable phase shifters and low-cost sensors. Here, we developed an integrated self-adaptive metasurface (SAM) with THz wave detection and modulation capabilities based on the phase change material. By applying various coding sequences, the metasurface could deflect THz beams over an angle range of 42.8°. We established a software-defined sensing reaction system for intelligent THz wave manipulation. In the system, the SAM self-adaptively adjusted the THz beam deflection angle and stabilized the reflected power in response to the detected signal without human intervention, showing vast potential in eliminating coverage dead zones and other applications in THz communication. Our programmable controlled SAM creates a platform for intelligent electromagnetic information processing in the THz regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555782PMC
http://dx.doi.org/10.1126/sciadv.add1296DOI Listing

Publication Analysis

Top Keywords

thz wave
8
thz
7
electrically addressable
4
addressable integrated
4
intelligent
4
integrated intelligent
4
intelligent terahertz
4
terahertz metasurface
4
metasurface reconfigurable
4
reconfigurable intelligent
4

Similar Publications

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Transcriptomic Analysis of Blood Collagen-Induced Arthritis Mice Exposed to 0.1 THz Reveals Inhibition of Genes and Pathways Involved in Rheumatoid Arthritis.

Int J Mol Sci

November 2024

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding of their biological mechanisms remains unclear. The aim of this study was to investigate the immunomodulatory effects of a 0.

View Article and Find Full Text PDF

Giant Ultrabroadband Bulk Photovoltaic Effect Engendered by Two-Photon Absorption in α-InSe for Chiral Terahertz Wave Generation.

Adv Mater

December 2024

Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Terahertz (THz) radar is beneficial for its high frequency and strong penetration ability, making it suitable for fields like aerospace and non-destructive testing, but current systems struggle with large-scale detection due to complexity and costs.
  • A new radar system using a one-dimensional photonic crystal and spintronic technology improves THz radar signals, achieving a signal-to-noise ratio of about 58 dB and bandwidth over 5 THz.
  • This innovative design allows for high-quality, uniform THz waves over a 4-inch radius, paving the way for advanced radar imaging useful in areas such as aerospace engineering, stealth testing, and 3D reconstruction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!