Reconfigurable intelligent surfaces (RISs) play an essential role in various applications, such as next-generation communication, uncrewed vehicles, and vital sign recognizers. However, in the terahertz (THz) region, the development of RISs is limited because of lacking tunable phase shifters and low-cost sensors. Here, we developed an integrated self-adaptive metasurface (SAM) with THz wave detection and modulation capabilities based on the phase change material. By applying various coding sequences, the metasurface could deflect THz beams over an angle range of 42.8°. We established a software-defined sensing reaction system for intelligent THz wave manipulation. In the system, the SAM self-adaptively adjusted the THz beam deflection angle and stabilized the reflected power in response to the detected signal without human intervention, showing vast potential in eliminating coverage dead zones and other applications in THz communication. Our programmable controlled SAM creates a platform for intelligent electromagnetic information processing in the THz regime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555782 | PMC |
http://dx.doi.org/10.1126/sciadv.add1296 | DOI Listing |
Sci Rep
December 2024
Computer Engineering Department, Lorestan University, Khorramabad, Iran.
This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding of their biological mechanisms remains unclear. The aim of this study was to investigate the immunomodulatory effects of a 0.
View Article and Find Full Text PDFAdv Mater
December 2024
Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!