Inhomogeneous in-plane deformation of soft materials or cutting and folding of inextensible flat sheets enables shape-morphing from two dimensional (2D) to three-dimensional (3D), while the resulting structures often have weakened mechanical strength. Shells like nacre are known for the superior fracture toughness due to the "brick and mortar" composite layers, enabling stress redistribution and crack stopping. Here, we report an optimal and universal cutting and stacking strategy that transforms composite plies into 3D doubly curved shapes with nacre-like architectures. The multilayered laminate exhibits staggered cut distributions, while the interlaminar shear mitigates the cut-induced mechanical weakness. The experimentally consolidated hemispherical shells exhibit, on average, 37 and 69% increases of compression peak forces, versus those with random cut distributions, when compressed in different directions. Our approach opens a previously unidentified paradigm for shape-conforming arbitrarily curved surfaces while achieving high mechanical performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555776 | PMC |
http://dx.doi.org/10.1126/sciadv.abq3248 | DOI Listing |
Ann Thorac Surg Short Rep
June 2024
Department of Pediatric Cardiovascular Surgery, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
The endocardial anchoring technique is a novel modification of total anomalous pulmonary venous return repair that involves creation of an L-shaped flap of the pulmonary venous confluence, subsequently anchoring it to the endocardium. A wide and smooth pathway can be expected from the theoretical advantages of this technique, namely, a smooth inner surface of the anchored flap and traction force to extend the orifice of the connection. An application of this technique for a rare variant of supracardiac total anomalous pulmonary venous return suggests its potential to be an alternative to the conventional repair, especially in patients with a curved pulmonary venous confluence.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of Mechanical Engineering Marshall University, Huntington, WV 25755, USA; Department of Biomedical Engineering Marshall University, Huntington, WV 25755, USA.
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFInt J Cosmet Sci
January 2025
Department of Engineering Science, Osaka Electro-Communication University, Neyagawa, Japan.
Objective: This study aimed to identify structural changes in age-related curved hair (referred to as "YUGAMI" hair in Japanese) induced by cyclical extension using infrared (IR) spectroscopy coupled with chemometrics, such as multivariate curve resolution (MCR) and two-dimensional correlation spectroscopy (2DCOS).
Methods: The hair fibres were stretched at a strain level of 0.3-N, and this operation was counted as one cycle and was repeated 500 cycles.
J Prosthodont
January 2025
Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
Purpose: This study aimed to investigate the effect of crystallization and finish line curvature on the integrity of lithium disilicate crowns fabricated by using partially crystallized (P) and fully crystallized (F) blocks.
Materials And Methods: Forty-eight lithium disilicate crowns were fabricated based on the designated lithium disilicate blocks and finish line curvatures. The specimens were divided into four groups (n = 12 each): P block with a curved finish line (PC), P block with a straight finish line (PS), F block with a curved finish line (FC), and F block with a straight finish line (FS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!