A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intercontinental analysis of temperate steppe stream food webs reveals consistent autochthonous support of fishes. | LitMetric

Quantifying the trophic basis of production for freshwater metazoa at broad spatial scales is key to understanding ecosystem function and has been a research priority for decades. However, previous lotic food web studies have been limited by geographic coverage or methodological constraints. We used compound-specific stable carbon isotope analysis of amino acids (AAs) to estimate basal resource contributions to fish consumers in streams spanning grassland, montane and semi-arid ecoregions of the temperate steppe biome on two continents. Across a range of stream sizes and light regimes, we found consistent trophic importance of aquatic resources. Essential AAs of heterotrophic microbial origin generally provided secondary support for fishes, while terrestrial carbon did not seem to provide significant, direct support. These findings provide strong evidence for the dominant contribution of carbon to higher-order consumers by aquatic autochthonous resources (primarily) and heterotrophic microbial communities (secondarily) in temperate steppe streams.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.14113DOI Listing

Publication Analysis

Top Keywords

temperate steppe
12
support fishes
8
heterotrophic microbial
8
intercontinental analysis
4
analysis temperate
4
steppe stream
4
stream food
4
food webs
4
webs reveals
4
reveals consistent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!