Life Span, Cause of Death and Neoplasia in B6C3F1 Mice Exposed In Utero to Low- and Medium-Dose-Rate Gamma Rays.

Radiat Res

Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan.

Published: December 2022

Previously, we reported that while low-dose-rate (LDR) gamma-ray exposure to 20 mGy/day for the entire gestation period (gestation days 0-18) did not result in any significant effect in B6C3F1 pups up to 10 weeks of age when compared to the non-irradiated controls, exposure to medium-dose-rates (MDR, 200 and 400 mGy/day) resulted in growth retardation and gonadal hypoplasia, in addition to delayed ossification (only at 400 mGy/day). In the present work, we investigated the late effects of continuous in utero exposure to gamma rays at LDRs (0.05, 1.0 and 20 mGy/day) and at an MDR of 400 mGy/day, on life span, causes of death, neoplastic and non-neoplastic disease incidences in B6C3F1 mice. Reproductive parameters such as litter size and weaning rates was not significantly different among the LDR groups, but was significantly decreased in the MDR group, when compared to the non-irradiated controls. Mean life spans were not significantly different among the LDR exposed groups compared to the non-irradiated controls, whereas the life spans of those exposed to the MDR were significantly shorter than the non-irradiated controls. There was no significant difference in tumor spectra between the non-irradiated and LDR nor MDR irradiated groups. In mice exposed to MDR in utero, the over-all incidence rates shifted with increased incidences in the number of neoplasms of liver (both sexes) and endocrine (adrenals, pituitary and ovaries in females) origin with corresponding decreases in the incidence of malignant lymphomas (both sexes) and lung neoplasms (males). Multiple primary neoplasms were significantly increased only in females exposed to MDR. Results show that B6C3F1 mice exposed to gamma-rays in utero at LDRs of 0.05, 1 and 20 mGy/day for the entire gestation period (18 days) does not significantly alter lifespan, cause of death, neoplasm incidence rates and tumor spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-22-00131.1DOI Listing

Publication Analysis

Top Keywords

non-irradiated controls
16
b6c3f1 mice
12
mice exposed
12
compared non-irradiated
12
400 mgy/day
12
exposed mdr
12
life span
8
span death
8
gamma rays
8
mgy/day entire
8

Similar Publications

This study characterizes the Aedes aegypti population from Fernando de Noronha Island, Pernambuco, Brazil, prior to implementing the Sterile Insect Technique (SIT). The main objective was to assess changes in glutathione S-transferase (GST) enzyme activity, previously linked to cypermethrin resistance in this population, in 2010. GST activity was measured in both male and female mosquitoes, masse produced in lab, after exposure to ionizing radiation.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Background: The spleen, as the body's largest peripheral immune organ and a crucial source of circulating monocytes, plays a significant role in the acute inflammatory response of spleen-derived macrophages to diseases. Therefore, studying the impact and mechanism of X-ray irradiation on spleen-derived macrophages' inflammatory responses is of great importance.

Method: Extracted and identified mice splenic macrophages were divided into four groups: control group, LPS and ATP co-stimulated non-irradiated group, LPS and ATP co-stimulated group irradiated after 6h, and LPS and ATP co-stimulated group irradiated after 12h.

View Article and Find Full Text PDF

Objective: to investigate changes in DNA methylation in bystander and inducer cells during the manifestation ofdirect and rescue bystander effects.

Methods: Separate and co-cultivation of peripheral blood lymphocytes (PBL) of 10 conditionally healthy individuals; γ-quantum irradiation (IBL-237C emitter); modified comet electrophoresis method (Comet assay) under neutralconditions using the methylation-sensitive restriction enzyme HpaII; fluorescence microscopy with an automatedcomputer software system for analyzing the results; statistical methods.

Results: The level of DNA methylation in PBL was quantitatively assessed using DNA migration parameters inagarose gel: the length of the comet tail (in μm), the percentage of DNA in the tail part of the comet, and TailMoment (TM), which simultaneously takes into account both the amount of DNA in the tail part of the comet andthe length of the tail.

View Article and Find Full Text PDF

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!