Cryopreserved human heart valve allografts: a ten-year single centre experience.

Cell Tissue Bank

Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.

Published: June 2023

This study provides an overview of tissue banking activities at the Croatian Cardiovascular Tissue Bank (CTB) during past ten years and presents the outcomes of cryopreserved heart valve allografts (CHAs) use in different patient groups. From June 2011 until December 2021, 75 heart donations were referred to CTB: 41 recipient of heart transplant (RHT), 32 donors after brain death (DBD) and 2 donors after circulatory death (DCD) donations. Processing resulted in 103 valves of which 65 met quality requirements for clinical use. Overall tissue discard rate was 37%. The most frequent reasons for discard were inadequate morphology (12%) in RHT donations and microbiological contamination (19%) in DBD donations. Altogether, 38 CHAs were transplanted to 36 patients. Recipients were divided in three groups; infective endocarditis (IE), non-infectious heart disease and congenital heart disease group. In the IE group, the 30-day, 1-year and 3-year survival was 71%, 53% and 47%, respectively. Freedom from re-operation due to all graft-related causes was 76% and due to structural valve deterioration 88%. There were no cases of graft reinfection. In the congenital heart disease group CHAs were predominantly (94%) used for right ventricular outflow tract reconstruction and 88% of patients recovered without graft-related complications. At present, the number of demands for CHAs at CTB considerably outweighs their availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555264PMC
http://dx.doi.org/10.1007/s10561-022-10043-3DOI Listing

Publication Analysis

Top Keywords

heart disease
12
heart valve
8
valve allografts
8
congenital heart
8
disease group
8
heart
7
cryopreserved human
4
human heart
4
allografts ten-year
4
ten-year single
4

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.

View Article and Find Full Text PDF

Objective: To examine the relationship between adoption of direct oral anticoagulants (DOACs) and health and cost outcomes for patients with nonvalvular atrial fibrillation.

Study Design: Real-world cohort study.

Methods: US adults who newly initiated treatment for nonvalvular atrial fibrillation were identified from claims data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!