Nuclear tension controls mitotic entry by regulating cyclin B1 nuclear translocation.

J Cell Biol

Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.

Published: December 2022

As cells prepare to divide, they must ensure that enough space is available to assemble the mitotic machinery without perturbing tissue homeostasis. To do so, cells undergo a series of biochemical reactions regulated by cyclin B1-CDK1 that trigger cytoskeletal reorganization and ensure the coordination of cytoplasmic and nuclear events. Along with the biochemical events that control mitotic entry, mechanical forces have recently emerged as important players in cell-cycle regulation. However, the exact link between mechanical forces and the biochemical pathways that control mitotic progression remains unknown. Here, we identify a tension-dependent signal on the nucleus that sets the time for nuclear envelope permeabilization (NEP) and mitotic entry. This signal relies on actomyosin contractility, which unfolds the nucleus during the G2-M transition, activating the stretch-sensitive cPLA2 on the nuclear envelope and regulating the nuclear translocation of cyclin B1. Our data demonstrate how nuclear tension during the G2-M transition contributes to timely and efficient mitotic spindle assembly and prevents chromosomal instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565158PMC
http://dx.doi.org/10.1083/jcb.202205051DOI Listing

Publication Analysis

Top Keywords

mitotic entry
12
nuclear tension
8
nuclear translocation
8
control mitotic
8
mechanical forces
8
nuclear envelope
8
g2-m transition
8
nuclear
7
mitotic
6
tension controls
4

Similar Publications

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry.

View Article and Find Full Text PDF

Colorectal cancer (CRC) constitutes the second leading cause of cancer-related death worldwide and advanced CRCs are resistant to targeted therapies, chemotherapies and immunotherapies. p38α (Mapk14) has been suggested as a therapeutic target in CRC; however, available p38α inhibitors only allow for insufficient target inhibition. Here we describe a unique class of p38α inhibitors with ultralong target residence times (designated ULTR-p38i) that robustly inhibit p38α downstream signaling and induce distinct biological phenotypes.

View Article and Find Full Text PDF

CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells.

PLoS One

January 2025

Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.

In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.

View Article and Find Full Text PDF

Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!