Enterovirus A71 (EV-A71) is a causative agent of life-threatening neurological diseases in young children. EV-A71 is highly infectious but it remains unclear how the virus disseminates from primary entry sites-the mucosa of the respiratory tract or the intestine-to secondary replication sites-skin or brain. Here, we investigated the role of dendritic cells (DCs) in EV-A71 dissemination. DCs reside in the mucosa of the airway and gut, and migrate to lymphoid tissues upon activation and, therefore, could facilitate EV-A71 dissemination to secondary replication sites. Monocyte-derived DCs were not permissive to different genotypes of EV-A71 but, notably, coculture with EV-A71-susceptiblle RD99 cells led to very efficient infection of RD99 cells. Notably, EV-A71 transmission of DCs to RD99 was independent of viral replication as a replication inhibitor did not affect transmission. Soluble heparin blocked EV-A71 transmission by DCs to RD99 cells, in contrast to antibodies against known attachment receptor DC-SIGN. These results strongly suggest that DCs might be a first target for EV-A71 and involved in viral dissemination via heparan sulfates and heparin derivatives might be an effective treatment to attenuate dissemination. EV-A71 is an emerging neurotropic virus that is of emerging concern and can result in polio-like illness. The exact mechanism of how EV-A71 results in neurological symptoms are unknown. In particular, the early dissemination of the virus from primary replication sites (airway and intestine) to secondary sites (central nervous system and skin) needs to be elucidated. There is evidence pointing toward a role for dendritic cells (DC) in EV-A71 transmission. Moreover, heparan sulfate (HS) binding mutations are observed in patients with severe diseases. Therefore, we evaluated the potential role of HS on DC in transmission. We find that HS are critical for transmitting EV-A71 by DC to target cells. Our data are consistent with other clinical and observations highlighting the importance of HS in EV-A71-induced disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769767 | PMC |
http://dx.doi.org/10.1128/spectrum.02822-22 | DOI Listing |
Medicine (Baltimore)
January 2025
The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.
View Article and Find Full Text PDFMol Oncol
January 2025
System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan.
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.
Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.
Cells
January 2025
Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.
CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China.
Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.
Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!