Motivation: Class imbalance, or unequal sample sizes between classes, is an increasing concern in machine learning for metabolomic and lipidomic data mining, which can result in overfitting for the over-represented class. Numerous methods have been developed for handling class imbalance, but they are not readily accessible to users with limited computational experience. Moreover, there is no resource that enables users to easily evaluate the effect of different over-sampling algorithms.
Results: METAbolomics data Balancing with Over-sampling Algorithms (META-BOA) is a web-based application that enables users to select between four different methods for class balancing, followed by data visualization and classification of the sample to observe the augmentation effects. META-BOA outputs a newly balanced dataset, generating additional samples in the minority class, according to the user's choice of Synthetic Minority Over-sampling Technique (SMOTE), Borderline-SMOTE (BSMOTE), Adaptive Synthetic (ADASYN) or Random Over-Sampling Examples (ROSE). To present the effect of over-sampling on the data META-BOA further displays both principal component analysis and t-distributed stochastic neighbor embedding visualization of data pre- and post-over-sampling. Random forest classification is utilized to compare sample classification in both the original and balanced datasets, enabling users to select the most appropriate method for their further analyses.
Availability And Implementation: META-BOA is available at https://complimet.ca/meta-boa.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btac649 | DOI Listing |
Physiol Meas
January 2025
Department of Electronics and Communication , Delhi Technological University Department of Electronics and Communication, Delhi Technological university, Bawana, New Delhi-42, New Delhi, Delhi, 110042, INDIA.
A physiological signal-based Human-Computer Interaction (HCI) system provides a communication link between human emotional states and external devices. Accurately classifying these signals is vital for effective interaction, which requires extracting and selecting the most discriminative features to differentiate between various emotional states. This paper introduces the SMOTETomek-Correlated Interactive Reinforcement Learning (ST-CIRL) framework for anxiety classification, which leverages meta-descriptive statistics to enhance the state representation in the reinforcement learning process.
View Article and Find Full Text PDFInt J Gynecol Cancer
January 2025
Institute of Image-Guided Surgery, IHU Strasbourg, France; University of Strasbourg, ICube, Laboratory of Engineering, Computer Science and Imaging, Department of Robotics, Imaging, Teledetection and Healthcare Technologies, CNRS, UMR, Strasbourg, France.
Objective: Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups.
Methods: Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus.
Waste Manag
January 2025
Department of Industrial and Systems Engineering, Kyonggi University, Suwon, Republic of Korea. Electronic address:
This study identifies and analyzes issues within the management system of the waste home appliances free pickup service and seeks to enhance the system by using an object detection model. To overcome the limitations of manually inspecting approximately 5,000 collections per day, the YOLOv8 model was implemented. Photos for proof of collection, which were difficult to verify visually, were excluded from the image data.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Physics, National Institute of Technology Silchar, Silchar, Assam, India.
Red blood cells (RBCs) or Erythrocytes are essential components of the human body and they transport oxygen from the lungs to the body's tissues, regulate balance, and support the immune system. Abnormalities in RBC shapes (Poikilocytosis) and sizes (Anisocytosis) can impede oxygen-carrying capacity, leading to conditions such as anemia, thalassemia, McLeod Syndrome, liver disease, and so on. Hematologists typically spend considerable time manually examining RBC's shapes and sizes using a microscope and it is time-consuming.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Software Convergence, Seoul Women's University, Hwarango 621, Nowongu, Seoul, 01797, Republic of Korea.
In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!