A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reservoir Computing with Charge-Trap Memory Based on a MoS Channel for Neuromorphic Engineering. | LitMetric

Reservoir Computing with Charge-Trap Memory Based on a MoS Channel for Neuromorphic Engineering.

Adv Mater

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano and IUNET, piazza L. da Vinci 32, Milano, 20133, Italy.

Published: September 2023

Novel memory devices are essential for developing low power, fast, and accurate in-memory computing and neuromorphic engineering concepts that can compete with the conventional complementary metal-oxide-semiconductor (CMOS) digital processors. 2D semiconductors provide a novel platform for advanced semiconductors with atomic thickness, low-current operation, and capability of 3D integration. This work presents a charge-trap memory (CTM) device with a MoS channel where memory operation arises, thanks to electron trapping/detrapping at interface states. Transistor operation, memory characteristics, and synaptic potentiation/depression for neuromorphic applications are demonstrated. The CTM device shows outstanding linearity of the potentiation by applied drain pulses of equal amplitude. Finally, pattern recognition is demonstrated by reservoir computing where the input pattern is applied as a stimulation of the MoS -based CTMs, while the output current after stimulation is processed by a feedforward readout network. The good accuracy, the low current operation, and the robustness to input random bit flip makes the CTM device a promising technology for future high-density neuromorphic computing concepts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202205381DOI Listing

Publication Analysis

Top Keywords

ctm device
12
reservoir computing
8
charge-trap memory
8
mos channel
8
neuromorphic engineering
8
memory
5
computing charge-trap
4
memory based
4
based mos
4
neuromorphic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!