A Humanized In Vitro Model of Innervated Skin for Transdermal Analgesic Testing.

Macromol Biosci

MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands.

Published: January 2023

Sensory innervation of the skin is essential for its function, homeostasis, and wound healing mechanisms. Thus, to adequately model the cellular microenvironment and function of native skin, in vitro human skin equivalents (hSE) containing a sensory neuron population began to be researched. In this work, a fully human 3D platform of hSE innervated by induced pluripotent stem cell-derived nociceptor neurospheres (hNNs), mimicking the native mode of innervation, is established. Both the hSE and nociceptor population exhibit morphological and phenotypical characteristics resembling their native counterparts, such as epidermal and dermal layer formation and nociceptor marker exhibition, respectively. In the co-culture platform, neurites develop from the hNNs and navigate in 3D to innervate the hSE from a distance. To probe both skin and nociceptor functionality, a clinically available capsaicin patch (Qutenza) is applied directly over the hSE section and neuron reaction is analyzed. Application of the patch causes an exposure time-dependent neurite regression and degeneration. In platforms absent of hSE, axonal degeneration is further increased, highlighting the role of the skin construct as a barrier. In sum, an in vitro tool of functional innervated skin with high interest for preclinical research is established.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202200387DOI Listing

Publication Analysis

Top Keywords

innervated skin
8
skin
7
hse
6
humanized vitro
4
vitro model
4
model innervated
4
skin transdermal
4
transdermal analgesic
4
analgesic testing
4
testing sensory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!