Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (AgAu, AgAu, AgAu, AgAu, AgAu, and AgAu) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, , silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar AuAg composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fd00092jDOI Listing

Publication Analysis

Top Keywords

agau agau
20
gold-silver alloy
8
surface
8
gold molar
8
molar fractions
8
agau
6
disproportional surface
4
surface segregation
4
segregation ligand-free
4
ligand-free gold-silver
4

Similar Publications

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

This article conducts wire bonding tests and cold/hot-cycle tests using φ 0.025 mm Ag-Au alloy wires and Ag-Au-Pd alloy wires with different specifications. The results show that, due to the addition of the alloying element Pd, under the same bonding parameters, the fracture strength and ball-bonded point shear force of the Ag-Au-Pd alloy wires are significantly higher than those of the Ag-Au alloy wires.

View Article and Find Full Text PDF

Direct preparation of silver nanoclusters is of great significance for their applications. In this work, by selecting sodium cyanoborohydride as a weak reducing agent to control the kinetics of the reduction reaction, we successfully prepared silver nanoclusters protected by thiol-containing ligands, including mercaptosuccinic acid, cysteine, and glutathione. Based on the silver nanoclusters protected by mercaptosuccinic acid, silver-gold alloy nanoclusters were obtained through a gold doping reaction.

View Article and Find Full Text PDF

Electric field-induced alignment of Ag/Au nanowires for ultrasensitive in situ detection of Interleukin-6.

Biosens Bioelectron

March 2025

School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Shandong Institute of Mechanical Design and Research, Jinan, 250353, China. Electronic address:

Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode.

View Article and Find Full Text PDF

Breast cancer poses a global threat with rising incidence and high mortality. Conventional treatments, including chemotherapy, radiation, surgery, and immunotherapy, have side effects, such as resistance issues and adverse effects due to genetic mutations. Meanwhile, noble metal nanoparticles (NPs) synthesized using environmentally friendly methods offer alternative treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!